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Abstract. Decentralized control systems are gaining more and more expansion, which is due to the
increase in the availability and power of microcontrollers. Decentralized control of multi-zone
objects is associated with the need to coordinate the local control systems of zones state. Learning
systems are preferred for implementation of the coordination methods, as they are able for flexibly
adjust to the specifics of control of each zone. However, the training of coordinators is complicated
task by the absence at the stage of a system creating of marked datasets for controlled multi-zonal
objects. This article considers the creation of a dataset based on a simulation of a decentralized
system and four scenarios for training neural coordinators. A model for simulation of a
decentralized system was been created on the Scilab/Xcos platform using a pre-built library of
blocks for simulating decentralized systems. The scenarios differ depending on the structure of the
neural coordinators: a segmented network according to the structure of the coordinator simulation
model or an integrated one, as well as on the training strategy: train all the coordinators of the
decentralized system in parallel or only one coordinator and then clone the results. Experimental
studies of the proposed method of training neural network coordinators, implemented on Python
TensorFlow, were conducted. The study showed greater effectiveness of segmented coordinators
parallel training. However, in the course of the study, the last step of the scenarios — fine tuning on a
real physical object, was not performed. A preliminary evaluation suggests that after such additional
training, the advantages of mono-neural coordinators will become more visible, since such
additional training will correct the shortcomings of imitation.

Key words: machine learning, distributed control system, decentralized coordination, model-
based learning.

MopenbHO-0piEHTOBaAHEe HABYAHHA KOOPANHATOPIB AeLEHTPATi30BaHOI CHCTEMH YIIPABJIiHHA
0araTo3oHaJIbLHUM 00'€KTOM

Boaoaumup Muxaiisiosuu /{yooBoii

JOKTOp TEXHIYHUX HayK, podecop,
npodecop kadenpu KOMIT IOTEPHUX CUCTEM YIPABIIHHS
BinHUIBKMIT HAI[IOHAILHUNA TEXHIYHUHN yHIBEpCcHUTET, BiHHUIIA

AHoTaunis. /leneHtparnizoBaHi cuCTeMH KepyBaHHS HAOMPArOTh BCE OIIBIIOTO PO3IOBCIOKEHHS,
10 3YMOBJICHO 30UIBLICHHSM JOCTYIMHOCTI i HOTy)KHOCTl MIKpOKOHTpoJiepiB. JleneHTpani3oBaHe
KepyBaHHS 0araTo30HAJbHUMH 00’€KTaMH IOB’s3aHE 3 HEOOXIJHICTIO KOOpAMHAMII JOKAIBHHX
CHCTEM KepyBaHHS CTaHOM 30H. [t peamizamii MeTOMIB KOOpJHMHALT MepeBary MalTh CHCTEMH,
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10 HABYAIOTHCSA, OCKIJIBKM BOHH 3JIaTHI THYYKO HAJAIITOBYBATHUCSA HAa OCOOJIHMBOCTI KEepyBaHHS
KO)KHOIO 30HOK0. [IpoTe HaBYaHHS KOOPJMHATOPIB YCKIATHIOETBCS BIJCYTHICTIO Ha CTajil
CTBOpPEHHSI CHUCTEMH PO3MIYCHHX JaTaceTiB IS KEPOBAHUX OaraTO30HAIBHHX 00 €KTiB. Y Il
CTaTTl PO3TJISAAAETHCS CTBOPEHHS JaTaceTy Ha OCHOBI IMITAIliiHOT MOJEi JNeleHTpaIi30BaHOi
CHCTEMH 1 YOTHpPM CIeHapii HaBYaHHS HEWPOHHUX KoopAMHATOpiB. IMitamiiiHa Moxaenb
JEIEHTPAII30BaHOI CUCTeMH CTBOpeHa Ha ruiaTdopmi Scilab/Xcos 3 BUKOpUCTaHHSAM MOIEPEIHBO
cTBOpeHoi 0ibmioTekn OJNOKIB /i1 MOJENIOBaHHS JEUEHTpalizoBaHux cucteM. CrieHapii
BIJIPI3HSIOTBCS 3aJICKHO BiJl CTPYKTYpH HEHPOHHUX KOOPIHMHATOPIB: CErMEHTOBaHA Mepeka
BIJIMIOBITHO JIO CTPYKTYpH IMITAIiifHOT MOJIesi KOOpJAHHAaTOpa abo iHTerpoBaHa Mepeka, a TaKOX
BiJ cTpaTerii HaBUaHHS: HAaBYATH MMapaJie)IbHO yCi KOOPIMHATOPHU JICHEHTPAIi30BaHOI CUCTEMH a00
TIIBKM OJMH 1 pe3yiabTaTh KJIOHyBaTu. lIpoBeneHi eKCIEepUMEHTaNbHI  JOCHIJKCHHS
3alPONIOHOBAHOTO METOAY HAaBYaHHS HEUPOMEPEKEBHX KOOPIMHATOPIB, peani3oBaHuX Ha Pyton
TensorFlow. [lochmimkeHHss Tmoka3amo  Oublly  e(EKTHUBHICTh MAapalieIbHOTO  HaBYAHHS
CETMEHTOBaHMX KoopauHaTopiB. I[IpoTe B X0l JOCHIIKEHHS HE BHKOHYBAaBCS OCTaHHIM eTamn
CIICHApiiB — JOHAaBYaHHS Ha peaJbHOMY (izuuHoMy 00’ekti. [lomepemHs oOIiHKAa 103BOJISIE
MPUITYCTUTH, IO TICIS TaKOro JOHABUAHHS IEPEBAard IHTEIPOBAHUX HEHPOHHUX KOOPIMHATOPIB
CTaHYTh TIOMITHIIITUMH, OCKIJIbKY TaKe JOHABYAHHSI IO3BOJIUTH BUIIPABUTH HEJOJIKH IMiTaIlii.

Kuiro4oBi ci10Ba: MaliMHHE HABYAHHS, PO3NOAiJIEHA CHCTeMAa KEePYBaHHS, /JeeHTPATIi30BaHA
KOOP/AUHAILisl, MOeJIbHO-OPi€HTOBAHE HABYAHHSI.
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Introduction. Decentralized control systems (DCS) are becoming more and more widespread,
which is due to the increase in the availability and power of microcontrollers. Decentralized control
of multi-zone objects (MZO) is associated with the need to coordinate local systems for control the
state of zones. The peculiarity of multi-zone objects is the mutual influence of zones. As a result,
their control becomes much more complicated, since the zone control algorithm must take into
account the consequences not only for the controlled zone, but also for other zones of the multi-
zone object. There are also other tasks within the framework of the problem of decentralized control
of MZO: ensuring the stability of a multi-connected system that arises as a result of the interaction
of MZO zones and local control systems (LCS); ensuring the reliability and safety of the DCS,
which may decrease due to failures of elements, communication means and coordinators, etc.;
ensuring the necessary speed of action, which is limited by the speed of the spread of impacts
between MZO zones, which requires high-quality forecasting of processes, etc.

State-of-the-Art. Classical approaches to coordination are based on a centralized (for a small
number of LCS and a small distance between them) or a hierarchical (for a large number of LCS or
a large distance between them) architecture of the coordination system. These approaches were
developed mainly for organizational management systems: organization management, military
management, etc. For the coordination of local control systems, these principles began to be applied
with the development of technological automation (Katrenko & Savka, 2008; Ladanyuk et al.,
2012). However, such systems have a rigid structure of connections and are difficult to scale. This
makes it difficult to use them in objects with frequent and rapid changes in requirements.

The decrease in the cost of automation tools, the development of the Internet of Things (loT),
and the exponential growth of the microcontrollers power have opened up a promising way to solve
the problem: the use of decentralized coordination with smart coordinators in each local control
system.

In order to investigate the phenomenon of coordination, a consortium comprising 12 European
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research centers was established, tasked with conducting the Project Control for Coordination of
Distributed Systems (CON4COORD or C4C) (Schuppen & Villa, 2015). An insightful review and
analysis of distributed coordination systems is expounded in (Ge et al., 2020). These inquiries
primarily focus on hierarchical systems, with particular emphasis on the allocation of functions
across different levels.

Decentralized systems are also the subject of research. A feature of distributed decentralized
systems is the significant uncertainty of subsystem interaction parameters, the incompleteness of
the system, and the lack of complete information about the state of other subsystems that are in
direct communication with a separate subsystem. The article (Bakule, 2008) reviews past and
current results in the field of decentralized control of large-scale complex systems.

Depending on system typology, the responsibilities associated with decentralized system
control encompass synchronization, decentralized stabilization, single-level coordination, peer
control, among others (Gong & Aldeen, 1997). This spectrum of inquiry spans linear and nonlinear
systems, continuous and discrete domains, and encompasses optimal and adaptive control
paradigms, robust methodologies, and systems featuring elements of artificial intelligence (Shaikh
etal., 2014).

The development of "small" energy, the appearance of a large number of solar wind and other
power plants made it practically impossible to centralize control. As a result, a number of works
dedicated to decentralized control in energy appeared (Zabet I. & Montazeri M. (2010); Aghdam et
al., 2019).

The analysis of modern research in the direction of the creation and research of distributed
systems of automatic control allows us to identify several urgent problems, in the solution of which
great attention is paid to the application of decentralized systems:

- Scalability and efficiency. Distributed automatic control systems often work with a large
amount of data and require high performance. The development of methods for optimizing the
operation of such systems in order to increase speed and efficiency remains an urgent problem;

- Reliability and security. Ensuring the reliability of distributed systems is an important task.
This covers both protection against accidental failures and ensuring resistance to failures of
individual elements of the system;

- Adaptability to changes. Given the variability of conditions and inputs, it is important to
develop methods that allow distributed automatic control systems to adapt to changes in real time
and provide optimal control.

Related works. Decentralized control of distributed systems has certain advantages, but it
raises a number of theoretical and practical problems. In many studies, attention is paid to the
problem of stability and quality of control in decentralized systems. Works (Boyd et al., 1994;
Siljak & Stipanovi¢, 2000). Use an approach based on the Lyapunov functions of the block-
diagonal structure and the construction of systems of matrix linear inequalities based on them.
Special tools for stability analysis are also being developed (Elmahdi et al., 2015).

Mirkin B. (1992) proposed the concept of adaptive decentralized control with model
coordination is. At the same time, it is assumed that information about the state of reference models
of all local subsystems is available to local controllers. In (Jianget et al., 2018). the problem of
consensus for a class of heterogeneous linear multi-agent systems is investigated. The consensus
problem is decomposed into a set of local tracking problems with local cost functions determined
from the tracking errors. Based on game theory, the set of stable optimal policies of the entire
network falls into a Nash equilibrium. In order to find the Nash solution, a distributed algorithm has
been developed that calculates control strategies using an iterative process.

For the implementation of methods of coordination of control systems of multi-zone
technological objects, learning systems are preferred, as they are able to flexibly adjust to the
specifics of each zone control. However, a difficult problem for the application of such systems is
the creation of training datasets. The article (Zhang et al., 2021). investigates model-based methods

68



ISSN 1999-9941, “TH®OPMAILIIMHI TEXHOJIOI'Ti TA KOMIT'FOTEPHA THXXEHEPIS”, 2024, Ne2

in multi-agent reinforcement learning (MARL). The complexity of dynamic sampling and the
complexity of component sampling in MARL are determined.

In modern works on the coordination of decentralized control in technical systems, the training
of agents in multi-agent systems based on neural networks is mainly considered. At the same time,
model-based multi-agent reinforcement learning is used. Wang et al. (2022) provides an overview
of existing research on model-based MARL, including theoretical analysis, algorithms, and
applications, and analyzes the advantages and potential of model-based MARL.

The article (Akramizadeh et al., 2010). developed model-based reinforcement learning for a
group of agents with self-interests and sequential action selection based on traditional priority
sorting. The learning process is considered as an extensive Markov game.

In previous works, the author of this article presented decentralized distributed control systems
(DCS) for multi-zonal objects (MZO) as two interacting layers (Fig. 1) (Dubovoi & Yukhymchuk,
2022): a layer of physical interaction of MZO zones and a layer of information interaction of local
control systems (LCS). The communication between MZO zones and the corresponding LCS is
carried out through regulators (executive devices) and sensors (feedback). The LCS implements
both the implementation of a specific control law (relay or linear) and coordination with other LCSs
in order to optimize the state of the MZO according to a given global criterion. In a decentralized
system, optimization is not carried out simultaneously by all LCSs, but in a sliding mode based on a
combined local-global criterion (Yukhymchuk & Dubovoi & Kovtun, 2022).
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Figure 1. Generalized image of a decentralized control system

In preceding research (Dubovoi & Yukhymchuk, 2022) specific facets of the architecture
pertaining to the decentralized coordination system governing multi-zone thermal entities were
examined. The constituents comprising the state control system of the DCS utilizing neural
networks are delineated as follows:

- DCS itself, which is divided into control and control zones;
- aset of agents implementing the sliding decentralized coordination algorithm;
- datasets characterizing the given and actual states of the DCS;
- training procedure for coordinators;
- user interface - system operator;
stream processors for control of data exchange between system components.
The coordinator agent in (Dubovoi & Yukhymchuk, 2022) uses the following principles,
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methods and algorithms

- A model of a distributed cyber-physical system with decentralized control, in which each
element of a multi-zone object is controlled by a local control system, which in turn
receives optimal control settings from a local coordinator;

- Assliding algorithm for control of the coordination sequence to ensure the stability of the
system;

- The principle of close action, which defines a set of coordinators (cluster), which provide
information to the sliding coordination center;

- Methods of estimating uncertain parameters;

- Methods of forecasting the effects and states of the system and the use of forecasting
during coordination control.

All the specified elements of the coordinator are combined in a synergistic interaction as
modules shown in fig. 2. As a result, the coordination function is implemented by a software
complex, but another version of the implementation of such an architecture using neural networks is
also possible.

The initial data for optimal coordination for MZO with n zones are:

- Vector F[n] of given zone states;

- Vector V,[n] of optimal states of zones (vector of LCS presettings is the initial data and

objective of coordination recursively);
- Vector V[n] of actual zone states (resource accumulated in the zone);

- Vector X[n] of the amount of input raw materials to each MZO zone, for the processing

of which the accumulated resource is spent;
- State uf1] of the surrounding environment.

At the output of the coordinator, only one value v,[1] is been obtained - the presetting for the
corresponding LCS.
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Figure 2. Scheme of interaction of coordinator modules

Objectives and problems. The conducted analysis showed that the existing approaches to
solving the problem of creating effective decentralized control systems for multi-zonal objects have
certain shortcomings. These shortcomings are mainly caused by too much idealization of the MZO
model. And since the MZO model, according to the scheme of connections of the coordinator
modules in Fig. 2, is used to perform all procedures: assessment, forecasting, optimization,
clustering, their accuracy is insufficient.

The problem can potentially find resolution through the development of coordinators based on
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neural networks (NN). However, another problem arises here: the training of such coordinators.
After all, training a neural network of coordinator requires a substantially extensive marked dataset
due to the complexity of the coordination task. Unfortunately, in most cases such datasets do not
exist for MZO.

The purpose of this work is to develop approaches to the creation of training datasets and
training procedures for DCS neuron coordinators (NC).

Proposed Method.

Statement of research. The volume and structure of the training dataset depends on the type
and size of the NN, which in turn depend on the characteristics of the problem for which they are
intended to be solved. Therefore, the first task of the work is to formulate an approach to choosing
the type and size of NN.The training method also affects the formation of the training dataset.
Given that multi-zone objects can differ significantly from each other in terms of spatial structure,
static and dynamic characteristics, final pre-operational training of the system is impossible.
Therefore, in this work, we will plan a two-stage training: preliminary training based on the DCS
simulation (model-based training) and further training in the process of operation. Accordingly, it is
necessary to formulate an approach to the creation of datasets and training procedures at both
stages.

Basic approach. Model-based training of the neural coordinator can be performed according to
various scenarios, depending on the structure of the neural coordinator and the features of the
structure of the multi-zone object.

According to the architectural depiction of the coordinator illustrated in Fig. 2, neural networks
must implement the following functions:

- DCS modeling;

Clustering;
Optimal estimation of parameters;
DCS state predicting;

- Optimization of the presetting according to the local-global criterion.

These functions can be implemented by separate neural networks (Separated Neural
Coordinator, SNC) and the NN of the architecture most suitable for this task should be chosen for
the performance of each function or with the help of one NN (Mono-Neural Coordinator, MNC)
which has 4n+1 inputs, 1 output and architecture united all the mentioned tasks in accordance with
Fig. 2.

GRU (Gated Recurrent Unit) is the most suitable type of neural network for solving the
problem of vector time series forecasting.

To solve the problem of optimal estimation of parameters, where one of the vectors is
calculated by solving a system of differential equations, it is advisable to apply the modification of
recurrent neural networks GRU (Gated Recurrent Unit)

Convolutional regression neural network is the most suitable type of neural network for solving
the problem of presetting optimization.

For the task of clustering a set of zones given by a weighted graph, the most suitable type of
neural network is GNN (Graph Neural Network). Among the modifications of GNN, GATs (Graph
Attention Networks) are the most acceptable - these networks pay attention to the proximity of
vertices in the graph and can take edge weights into account.

The most difficult task is the creation of a neural model of DCS, since it consists of
interconnected models of zones, resource flows and LCS, and each of them are described by
differential equations of different orders. As a result, the neural model should contain several
recurrent layers, several (at least two) layers with lateral connections, as well as a Convolutional
Neural Network with Vector Output.
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The MNC coordinator solves the problem comprehensively, therefore, taking into account the
order of the DCS dynamics model, the need to predict states, as well as the mutual influence of
zones and coordinators, the MNC architecture should be built on the base of a GRU network with
an additional recurrent layer and convolutional layer. Note that the MNC coordinator must receive
all 4n+1 input data and have an appropriate number of items in each layer, while NNs for
individual tasks have a much smaller dimension.

Thus, there are 4 basic scenarios of NC learning, shown in Fig. 3, and their combinations in the
case of partial merging of NNs.

dataset makin learning settings to all all MNC on all NC on real
. . Global All MN Fine-tuning of al
> S|mu|at|<> dataset Iearnlng> NC on real DCS
> Simulatio ocal segmente One SNC Cloning Fine-tuning of)ine-tuning of all
dataset makin learnin settings to all all SNC on NC on real DCS

> Simulation Global segmente§ All SNC Fine-tuning of Fine-tuning of
dataset making learning all SNC on all NC on real

>Simu|atio Local mono q>One MNC C_:Ionlng Fine-tuning 0f> Fine-tuning of

d)
Figure 3. Basic scenarios for training neural coordinators

According to the scenario in Fig. 3a, one MNC coordinator is trained. The dataset is created for
this purpose with the help of simulation of one NC of the most characteristic LCS, i.e., the one that
is affected by the largest number of external influences. Based on the training results of this NC,
other DCS coordinators are cloned. In the next step, individual adjustment of all MNCs is carried
out on the simulation model and further training on the physical object. The last stage of additional
training is already in the process of implementing the system.

According to the scenario in Fig. 3b, MNC coordinators of all LCS are simultaneously trained.
For this, a global dataset of inputs and outputs of all NCs is created using simulation. This method
does not require additional training on a simulation model, but requires a much larger dataset. In the
last step, additional training is carried out at the physical object.

According to the scenario in Fig. 3c, one SNC coordinator is trained. Since the NC is
segmented, that is, each function of the coordination task is performed by a separate NN, and a
corresponding segmented dataset for the most characteristic LCS is created with the help of
simulation for this. Based on the results of the training of all segments of the NN of this NK, other
DCS coordinators are cloned. In the next step, individual fine-tuning of all relevant SNC segments
is carried out on a simulation model and then fine-tuning on a physical object.

According to the scenario in Fig. 3d, SNC coordinators of all LCSs are simultaneously trained.
For this, a global segmented dataset is created for each module of all NCs using simulation. This
method requires fine-tuning the joint action of all modules of each SNC on a simulation model. In
the last step, additional training is carried out at the physical object.

Numerical Experiments, Results and Discussion

The study of the effectiveness of these scenarios was carried out on the basis of a decentralized
MZO control system with 4 zones located in series (Fig. 4).

Zones 1...4 affect each other by exchanging resource flows (heat, raw materials, etc.). Local
zone control systems exchange information necessary for coordination through a data transmission
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system.
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Figure 4. Basic structure for simulation

The simulation model of the system was created on the Scilab/Xcos platform using the block
library for modeling distributed control systems (Dubovoi & Yukhymchuk, 2022; Yukhymchuk,
2022). Fig. 5a shows the model of one zone with LCS, Fig. 5b shows the model of the coordinator.

—_— 1
Ly

Al X DL
o e e ™
s s s s s e
12T G L gall
D R P A e IR — :5:»®
: o
. "I._. M} si A @Hg
i—.m T - {03
a) b)

Figure 5. Simulation models of the controlled zone and the coordinator

Neural coordinators MNC were created using ChatGPT with the Tensor-flow library. An
example of the network generation function is shown in Fig. 6.

def create_model():
model = Sequential([
Input(shape=(5, 17)), # Input layer for historical data
GRU(64, return_sequences=True), # Recurrent layer GRU
GRU(32), # The second recurrent layer GRU
Dense(1) # Output layer with one neuron

)

return model
Figure 6. Function for MNC generation from ChatGPT

Let's calculate the number of configurable parameters for the proposed model:
1) First layer GRU:
- Parameters for the input vector: 17x64+64=108817x64+64=1088;
- Parameters for recurrent matrix: 64x64+64=416064x64+64=4160;
Total: N;=1088+4160=52481088+4160=5248.
2) Second layer GRU:
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- Parameters for the input vector: 64x32+32=208064x32+32=2080;
- Parameters for recurrent matrix: 32x32+32=105632x32+32=1056;
Total: N,=2080+1056=31362080+1056=3136.
3) Output fully connected layer:
- Parameters for scales: N3=32x1+1=3332x1+1=33
Thus, the total number of configurable parameters for this model is:
Np=5248+3136+33=84175248+3136+33=8417.

To create a dataset from the input, output and internal parameters of the coordinators, the
module for outputting simulation data to a file shown in Fig. 7 was used. Pre-normalization of the
simulation data was not required because the stability of the system had been verified in previous
work and the parameter ranges were specified in the simulation presetting. The resulting data array
was divided into a training (80%) and testing (20%) subset.
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30 === Scenario 2

bgnr:it:at:y file 20 -% Scenario 3
10 e i ==é==Scenario 4

MU

- . 0 T T T T T 1
Figure 7. Module for outputting 0 100 200 300 400 500
simulation data to a file

Figure 8. Comparison of the effectiveness of the
scenarios

Dependencies of the RMSE of the output vector of presettings of the neural network relative to
the same vector of presetting of the simulation on the testing sample and the number of training
epochs were studied. The results of the study are shown in Fig. 8. The dataset was generated by a
simulation with random input influences F[n], X[n], u with a uniform distribution and an

exponential correlation function. The probability distribution of the components of the vector F of

a given state of the zones is normal, with mathematical expectation m; =37, variation m—f =20%,
f

correlation interval «, =5 simulation cycles. The probability distribution of the components of the

raw material flow vector X is uniform, with mathematical expectation m, =10, variation Ix _10%,
mX

correlation interval r,=5 simulation cycles. The probability distribution of the state of the
environment u is uniform, with a mathematical expectation m; =15, range is [0;30], correlation

interval z, =15 simulation cycles.

Let's estimate the required number of dataset blocks. To prevent overfitting, we will use the
“10x rule”. This means that the number of training data should be 80,000, and the total number of
simulation cycles and, accordingly, data blocks (including test ones) should be Ng=10°.

Research results have shown that with a sufficiently large number of epochs, all scenarios lead
to approximately the same result. However, segmented NCs approach the final learning level faster.
In the cases of Scenarios 1 and 3, where one coordinator was first trained for 300 epochs and then
the results were cloned to other coordinators, the overall RMSE increased immediately after
cloning, but quickly decreased to close to Scenarios 2 and 4 as a result of fine-tuning.

At the same time, the training of segmented coordinators requires the creation of similarly
segmented datasets: separately for each task which complicates the training process.

74



ISSN 1999-9941, “TH®OPMAILIIMHI TEXHOJIOI'Ti TA KOMIT'FOTEPHA THXXEHEPIS”, 2024, Ne2

Conclusions. The studies allow us to conclude about the possibility of transition from the
algorithmic solution of the problem of coordination of local control systems of multi-zonal objects
to the solution using neural networks. Two variants of neural coordinators are considered:
segmented and non-segmented. The advantage of the segmented version is a slightly higher learning
speed. However, the non-segmented version is more versatile because it is not tied to a defined
coordinator structure.

In the course of the study, the last stage of the scenarios - supplementary training on a real
physical object - was not performed. However, it can be assumed that after such fine-tuning, the
advantages of MNC will become even more noticeable, since such fine-tuning will correct the
shortcomings of imitation.

Further research is expected to be directed to the task of choosing the optimal architecture of a
neural network for decentralized coordination of MZO.
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