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Abstract Fast DC charging sites are required along motorways to abrogate the car drivers' anxiety
of long-distance travels when driving electric vehicles (EVs) with batteries optimised for efficient
average reach. This is important to facilitate the mobility transition to EVs. In this study, a queueing
model-based approach to simulate and evaluate fast charging sites equipped with many DC
charging points is presented. Charging sites are modelled as multi-server queueing systems with
finite waiting space, where the servers represent the charging points and the waiting space the
parking area available for EVs waiting for service. To evaluate also arrival and service time
distributions that are non-Markovian, the queueing system is evaluated using event based
simulation. Exemplary results and a comparison with analogous simulation tools complete the
presentation of the simulation approach.

On one hand, the simulation reveals the mean potential waiting time per EV before charging can
start due to the temporary occupation of all charging points. On the other hand, the tool analyses the
aggregated power demand of all charging points. Based on latter, the smart charging mechanism
reduces dynamically the individually available charging power if needed to stay below the power
grid access limit. This smart charging mechanism causes a small decline in the charging
performance at high EV traffic loads when all charging points are maximally occupied. In
combination with the state-of-charge depending power demand, the tool provides the user critical
insights into realistically expectable waiting times and decreased charging volumes when many EVs
charge in parallel. Experimenting with different number of charging points and grid power
limitations helps the tool-user, the systems designer, to dimension charging sites along motorways
that can efficiently handle future traffic loads.
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AnoTauis. IBuaki 3apsiiHi cTaHmii MOCTIHHOTO cTpyMy HEOOXi/IHI B3AOBXK aBTOMAricTpaiei, oo
1030aBUTH 3aHENOKOEHHS BOJIIB IOJO IMOI3J0K Ha BEJMKI BIACTAHI Ha EJIEKTPOMOOUIAX 3
OarapesiMi, OINTUMI30BaHUMHU i1 €(QEeKTUBHOIO cepelHboro 3amacy xoay. lle BaxmuBo amns
MOJJAJIBIIOTO CIIPHUSIHHA MEepeXo1y Ha eIeKTpoMOoOiIi. Y 1bOMY JOCHIIKEHH] MPeICTaBIeHO MiAXiza
Ha OCHOBI MOJIEJI YepT /I MOJICTIOBaHHS Ta OLIIHKYA MaiIaHYMKIB MIBUAKOI 3apsIKH, 00JaJHAHUX
OaraTbMa 3apsAAHMMHU IYHKTaMH [OCTIHHOrO CTpyMy. 3apsiHI CTaHLil MOJENIOIThCA SK
OaraTocepBepHI CUCTEMH MacOBOrO OOCIyrOBYBaHHS 3 OOMEXKEHHM IPOCTOPOM OYIKYBaHHS, €
CepBepU MPEJCTABISAIOTh MYHKTH 3apsAKd, a MPOCTIp OUYIKyBaHHS-NAPKyBaJIbHY 30HY, JOCTYIHY
JUI €JIeKTPOMOOLIIB, Kl OYIKYIOTh Ha o0ciyroByBaHHs. IIl00 OLIHHUTH TakoXX pO3MOAUI yacy
npubyTTs Ta OOCIYrOBYBaHHSA, SIKMH HE € MapKOBCHKUM, CHCTEMa MAacOBOTO OOCIIyrOBYBaHHS
OLIHIOETHCS 3a JTOTIOMOTOK0 IMITAI[IITHOTO MOJIETIOBaHHS Ha OCHOBI nofii. [Ipuknaani pe3yabraTu
Ta MOPIBHSAHHS 3 AHAJIOTIYHUMHU IHCTPYMEHTAMH MOJIEIIOBAHHS 3aBEPUIYIOTh IPE3CHTALlI0 MiAX0TY
710 MOJIEJIIOBaHHS. 3 OJJHOTO OOKY, CUMYJIALIS IEMOHCTPY€E CepeAHIN MOTEHIINHUI Yac OYiKyBaHHS
eJIEKTPOMOOUIA 10 MOYATKy 3aps/PKaHHS Yepe3 THMMYAcOBY 3aMHATICTH YCIX 3apsIHHX TOYOK. 3
1HIIOTO OOKY, IHCTPYMEHT aHalli3y€ CYKYIHHUI MOMUT HA €JIEKTPOCHEPrito YCIX 3apsIHUX CTaHIIIH.
Ha ocHOBI OCTaHHBOTrO, MEXaHi3M pPO3YMHOI 3apsiIKM JWHAMIYHO 3MEHUIYE 1HAMBITyaTbHO
JOCTYNHY MOTYXHICTh 3apsAIK{, 1100 BOHA HE MEpEeBUIIyBajia JIMIT JOCTYMY 10 €IEKTPOMEPEKI.
Ile#l iHTENEeKTyaJbHUN MEXaHi3M MPHU3BOIUTH [0 3HIDKEHHS HPOJYKTHBHOCTI 3apsKud MpU
BHCOKOMY HaBaHTa)KE€HH1 TpadiKy eIeKTpOMOO1IiB, KOJIM BCl 3apsAIH1 TOUKHU 3aiHATI. Y MO€IHaHHI
3 moTpebo0 B €Heprii, IO 3aleXUTh Bl CTaHy 3apsly, IHCTPYMEHT HaJa€ KOpPHUCTyBayeBi
KPUTHYHO BaXJIMBY 1H(QOPMAI[IO MPO pPeaqiCTUYHO OYIKYBaHUM Yac OYIKYBaHHS Ta 3MEHILEHHS
00CsTiB 3apsKaHHs, KoM 0arato eJIeKTpPOMOOLTIB 3apsaKaloThCs mapanenbHo. ExcriepuMenTH 3
PI3HOI0 KUIBKICTIO TOYOK 3apsAKd Ta OOMEKEHHSMU MOTY)KHOCTI Mepexi J0InoMararoTh
KOPUCTYBa4yeBl IHCTPYMEHTY Ta TMPOEKTYBAIbHUKY CHUCTEMU BHU3HAUUTH PpO3MIpU 3apsIHHUX
MalJaHYMKIB Y3J0BXK aBTOMAaricTpaiei, siKi 3MOXYTb €(QEKTUBHO BIIOpaTUCA 3 MaHOyTHIM
TPAHCIOPTHUM HABaHTAXKECHHSIM.

KurouoBi cioBa: mBuaka 3apsijaka, po3yMHa 3apsjka, 3apsiiHi CTaHIlii, MOJIETIOBaHHS HAa OCHOBI
MOJIii4, TICTOTPaMU MOTY>KHOCTI.
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Introduction. To significantly reduce greenhouse gas emissions in the mobility sector and
thereby mitigate climate change (Erbach 2024), the transition to electric vehicles (EVs) appears
imperative (Tang 2023). EV sales rise steeply and reached 20% or more in many markets, often
supported by governmental incentives. Overcoming the range limitations of current EV technology
with larger batteries is probably neither efficient nor sustainable because for the majority of
distances travelled (Eurostat 2021), the extra weight and cost are not required. Still, for the
occasional longer-distance travel, recharging needs to be integrated into the travel planning if
recharging opportunities are scarce and recharging occurs comparably slow. To be reliable, a
robust, freely accessible, and trusted fast charging infrastructure is required especially along
motorways (EUR-Lex 2023) to ensure that travel remains convenient and time-efficient, and to
alleviate the common range anxiety among non-EV users.

Recent literature covers mostly the deployment of a distributed AC charging infrastructure in
residential areas (Huang 2023, Jansson 2022). Research results on the integration of fast direct
current (DC) charging along motorways, where fast charging is most needed, are hardly found and
often very complex, as in (Witt 2023). Yet, some companies plan recharging sites with megawatt
grid access needs. Are the thereby triggered grid expansions really necessary, or can smart charging
considerably reduce the required grid access needs? The answer to this research guestion depends
heavily on the actual EV traffic load expected and the dynamics of fast EV charging (Witt 2023). In
addition to the technical and economic challenges of installing and operating such charging sites,
also the impact on the electric grid shall be encompassed (Lee 2019).

This research is grounded in the imperative necessity to address climate change through the
transition to a sustainable transport sector, in which the strategic shift towards EVs is a critical
element (Erbach 2024). As the global automotive market gradually shifts away from fossil-fuelled
combustion engines, the establishment of a comprehensive charging infrastructure becomes
paramount (EUR-Lex 2023). For an economic deployment, the designers of these infrastructures,
the systems engineers, need to anticipate future demands, and cannot cater to the immediate needs
of today's EV users only.

This research ventures beyond the common discourse on distributed AC charging solutions at
home and at work, which are needed because these cover the vast majority of the recharging events
(IEA 2024). The EV adoption is not solely an economic issue, the anxiety concerning the
occasional long-distance travel needs to be solved equally for broad acceptance (Sirapa 2022).
Delving into the realm of high-capacity, fast-charging sites capable of supporting long-distance EV
travel raises other issues, in particular regional grid access limitations (Csanyi 2018). It is therefore
critical to assess the potential of smart charging solutions to mitigate the impact on the electrical
grid, thereby avoiding or at least postponing extensive and costly grid upgrades (Rahila 2024). The
focal point of the presented simulation tool and exemplary study resides in the elaboration of
efficient and effective DC charging sites along motorways, pivotal for overcoming the notable
barriers to EV adoption, such as range anxiety and long recharging times (Sirapa 2022).

Exploring the interrelation of fast and smart charging technologies, the study adopts a
methodology from the telecommunications sector employing event-based simulation and queueing
theory (Yang 2018) to efficiently model the dynamics of smart and fast charging sites. This
approach offers fresh insights into optimizing charging site performance, managing the actual
power demand, and an effective step-by-step expansion path for high-capacity charging sites. In
essence, this investigation not only highlights the technical and logistical challenges inherent in the
deployment of a high-capacity DC charging infrastructure but also situates these challenges within
the larger context of the electricity distribution grid, the complex energy system as a whole, urban
planning, and environmental policymaking. By providing a detailed analysis of the requirements
and impacts of DC charging sites, the study seeks to inform a wide range of stakeholders, from
policymakers to industry leaders, thereby supporting the collective move towards a more
sustainable, electrified future.

The purpose that triggered the development of the simulation tool is the need to accurately
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assess the performance and grid impact of modern DC charging and to use this information for the
design of efficient DC charging infrastructures (charging sites) along motorways. The R&D aim is
to balance the EV serving capacity and the power demand challenge, ensuring that future EV
charging sites, yet planned and soon deployed, deliver efficient, reliable service without
overburdening the electrical grid. Through simulation, this study seeks to support the development
of smart charging strategies that achieve scalable, sustainable solutions for the mobility transition to
a low-carbon mobility future, which requires the rapid integration of a steeply rising number of EVs
into the transportation network every day.
The primary research objective is to simulate charging sites with any number of DC charging
points considering:
o the dynamic, state-of-charge dependent power demand of DC charging,
o the dynamic charging power limits introduced by smart charging technology,
o visualising the statistical results in publishable quality as scalable vector graphics for in-
creasing traffic loads,
o saving complete scenarios including set parameters in txt and XML format together with all
statistical results in CSV and graphical format in a single zip-file for research documentation
and open data support.

State-of-the-art and analogous simulation tools. The Electric Vehicle Queueing Simulation
designed by Ken Lau in 2017 (Lau 2017), is a visualization tool created to model and analyse the
traffic intensity at electric vehicle charging stations. It calculates waiting times based on car arrival
rates and charging speeds, assuming a Poisson process for the randomised arrivals and negative
exponential distributed charging times. The tool users can adjust parameters like mean arrival rate,
charging rate, and the number of charging points, to study their effects on key performance
indicators such as queue lengths and waiting times. The simulation of this M/M/n queueing system
serves as a valuable tool for understanding and optimizing charging station throughput and
customer waiting times. However, the electric load and the charging performance are not evaluated,
and other than Markovian arrival and service distributions cannot be chosen to better approximate a
more realistic charging time distribution.

The C++ simulation of a multi-server queueing system, made public available on GitHub by
Zedrex in 2021 (Kabeer 2021), leverages an event-driven approach for efficiently managing
customer flows. By simulating customer arrivals, service processes, and departures across multiple
servers, it adeptly mimics real-world queuing scenarios. It uses an exponential distribution for
generating random inter-arrival and service times, reflecting real-world unpredictability by
assuming a memory-less distribution process. Customers are queued and served based on server
availability, with the system tracking each customer's journey from arrival to departure. Key
methods include event scheduling, handling arrivals/departures, and statistical logging for analysis.
This setup allows for detailed insights into queuing dynamics and server efficiency, although it
simplifies real-world complexities and relies on an exponential distribution of both, the arrival and
the service process.

The Queueing Simulation tool implemented in Java and published in open source by Adnan
Ansari 2019 (Ansari 2019), aims to model the process of car servicing with two service types: one
assumed for Sedans and another for SUVs. It aims to model the process of servicing different EVs
(Sedans and SUVs) using a queuing system, where the inter-arrival time and the two service time
distributions can be specified by any number of discrete probability densities, which allows it to
mimic measured distributions. The main objective is to analyse the performance of the EV service
centre (charging site), i.e., average waiting probability and time as well as server utilisation, to
assess the efficiency of the configured service resources. The two servers are assumed to have their
own queues and are predestined to serve the assigned clients, Sedans or SUVs. However, if the
according server is busy and the other server is idle, the over server also serves EVs of the other
type. Still, the individual queues are filled with the assigned EV type only. This simulation tool
allows to determine key performance indicators of the service and helps to improve service
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processes, reduce waiting time for customers and optimise the utilisation of resources. On the
downside, to evaluate the performance over increasing load (arrival rate over service rate) the
distribution definitions need to be accordingly adjusted in the source code. Without prior
calculation, the simulated load is difficult to predict and similarly to compose curves over
increasing load.

A different approach is commonly taken when analysing the impact of EV charging on
electricity distribution and supply. Most studies rely on real-world data and model all EV charging
throughout a whole region, based on modelled, assumed, or empiric driving patterns for rural and
urban residents. These studies need to include charging at the owners' premises and at long-term
parking spaces, where most charging events occur, and where AC charging suffices because speed
is at these locations of minor relevance. These studies, e.g. (Witt 2023), (Grigorev 2021), and (Yang
2021), focus on the impact of electric vehicles (EVs) on the regional electricity supply, with
considerations ranging from traffic congestion to the dynamics of the EV charging demand.
Grigorev and colleagues explore how EVs could influence traffic congestion and energy
consumption through an integrated modelling approach, revealing potential shifts in urban mobility
patterns (Grigorev 2021). Witt’s research utilizes real traffic data and discrete event-based
simulation to determine the required number of charging stations along a German motorway,
providing essential insights for infrastructure planning (Witt 2023). Meanwhile, Yang and co-
authors offer a dynamic model for the real-time management of a system of EV fast-charging
stations, addressing the challenges of meeting EV charging demand without overburdening the
electrical grid (Yang 2021). Each study assumes varying degrees of smart charging control,
underscoring the critical role of intelligent charging strategies in harmonizing EV integration with
existing electricity networks.

The simulation tool and study closest in its aim to the customised tool developed for the R&D
project eAlloc (eAlloc 2021), is the tool presented in (Witt 2023). However, the reported results are
only mean values, lacking confidence intervals and variance to be convincing. To learn about the
system behaviour at different loads the simulation needs to be repeatedly executed and separately
visualised with the help of some extra software tool.

Finite multi-server queueing system simulation. The simulation developed in Java models
charging sites as finite multi-server queueing systems (Kleinrock 1975) as depicted in Figure 1. A
dedicated number of charging points and limited waiting (parking) space determine the site
configuration.

Parking space Charging points

&

Arriving EVs ®

Departure EVs

Waiting EVs Charging EVs

Figure 1. Finite multi-server queueing system modelling a charging site with three charging
points and waiting space for four EVs
Markov processes, renowned for their memoryless property, offer a solid foundation for the
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analysis of queueing systems. This distinctive feature ensures that the future state of a system is
determined solely by its current state, rather than the sequence of events leading up to it. When
applied to EV charging stations, this principle states that the arrival of vehicles and their respective
charging duration are both independent memoryless processes. This simplification aids in the
analysis yet effectively captures the core dynamics of people's arrival and queueing behaviour.

Utilizing the theory of Markov processes to model the queuing system for EV charging
involves defining the system's states based on the number of EVs either charging or awaiting
charge. Transitions between these states are governed by probabilities, i.e., the intensity of EV
arrivals and the times spent for charging. Such a methodical approach enables the examination of
the queueing system's dynamics, thereby facilitating the identification of an optimal design. This
modelling technique simplifies stochastic dynamics into manageable mean values and variances,
making it easier to analyse and optimize the operation of for example EV charging sites.

For memoryless (Markovian) arrival processes and independent (also Markovian) charging
durations, the state probabilities Pi of such a queueing system can be calculated analytically. These
systems are composed of n charging points and (N-n) places for EVs to wait, as shown in Figure 2.

1 21 3 L [u 1) ’u N nu Hﬂ nu nu

Figure 2. State-transition diagram

In Kendall’s notation, this is an M/M/n/N system: the first “M” denotes that the arrivals result
from a Poisson process with negative exponential distributed inter-arrival times (memoryless), the
second “M” indicates that the service times are also negative exponentially distributed (also
memoryless), n represents the number of servers (charging points in this context), and N is the total
system capacity, including both charging points and waiting space. Thus, an M/M/5/15 system can
accommodate up to 15 EVs at once, with 5 being charged and 10 waiting. If all waiting places are
occupied, arriving EVs are deflected (blocked), i.e., are assumed to continue to an alternative
charging site.

The theory of queueing systems has become popular with the advent of information and
communication technology (ICT) to predict system occupation and client waiting times. However,
the theory intensely studied by L. Kleinrock in (Kleinrock 1979, Liu 2021), can be applied to many
similar systems where clients arrive, occupy a resource, and after some time leave the system.
Based on this theory, the mean number of waiting clients equals the sum of the probabilities that the
system is in a waiting state multiplied by the number of clients waiting in each state. Little's law
E{N} = A-E{T} yields that the average waiting time Tyi; equals the mean number of waiting clients
divided by the arrival rate A, as shown in equation (1). Summing over all waiting state probabilities
P;~,, yields the waiting probability P.i;, as shown in equation (2).

M/M N _ M/M N
Toaie """ = 3 ZMpaa (=) B (1)
M/M N M M N
Pwa/it /ml Zl n+1 /Mim/ (2)
The individual state probabilities P"'/*/™"can be calculated by solving the following equation
system:
1AL pi
Pilizy = 57:Po = T Po @)
o
P 1156=n| ni- nPO (4)
P0=1_Zi=1 i (5)
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where the load factor p = % Is introduced, and equation (5) states that the system needs to be in

one of the possible states at all times, i.e., YP; = 1.

We use equation (1) later on with the presented results to calculate the waiting time of an
equivalent M/M/n/N queueing system depicted as narrow black curve. Comparing the simulated
waiting time with that calculated for the Markovian system reveals the impact of the actually used
distributions compared to the memoryless system that can be analytically solved. Figure 3 proves
that the calculated waiting time equals the result of the simulation if we simulate the Markovian
system where both, the inter-arrival and the service times are negative exponential distributed.

Charging site Queueing Characteristics
M_Wg.“ -.9. Lng Sywom (A0 <§..Fv».p.- — Charging site Queueing Characteristics
15 Quesoing Systom (26000 sarpes acr e ualtan aeirt)

Figure 3. Waiting time over EV arrival rate for M/M/5/15 and U/D/5/15 queueing system

The results for the M/M/5/15 queueing system shown on the left in Figure 3, prove that the
statistically derived waiting times (red curve) achieved from simulating the queueing system
outlined in the next section equal the waiting times calculated analytically (narrow black curve)
using equation (1). The results on the right side in Figure 3 show that for uniformly distributed
arrivals (equally probable inter-arrival times between zero and twice the mean) and deterministic
service times (all equal), i.e., a U/D/5/15 queueing system, the performance up to the critical load is
better, but much worse if the traffic load exceeds the total service capacity (nu). This example
shows that the analytic approach is not always feasible and the simulation of the queueing system is
more versatile in the case that the inter-arrival and service time distributions are known and do not
fulfil the memoryless property required to be Markovian.

Charging site analysis based on simulation. EVs are assumed to arrive with negative-
exponentially distributed inter-arrival times, which models the independent arrivals of vehicles to a
charging site. Considering the typical similarity of charging times (service time), which results from
the commonly faster charging possibility of larger batteries, we assume the service time to be
Erlang-2 distributed. The charging demand is assumed to be Beta distributed between 0% and 100%
of the battery capacity, assuming a mean state of charge (SoC) when EVs arrive at the charging site
between 10% and 30% SoC. Figure 4 depicts the analytically calculated characteristic probability
density function (pdf) of these distribution functions as red lines and the histograms of the
generated random samples via blue bars.

The EV charging time is in general not negative exponential distributed but peaks at some
rather short duration between 15 minutes and one hour, as shown in the presentation in (Lau 2017).
This can be approximated with an embedded Markov chain and solved analytically, but easier and
applicable for any distribution is the simulation of the queueing system using the event-based
simulation technique. This enables the analysis of general G/G/n/N queueing systems (for any inter-
arrival and service time distribution that can be generated) and in addition, to directly evaluate also
the dynamic interactions among decreasing charging power demand (the SoC dependence) and
smart charging (dynamic power limit adjustments) at the charging site. This involves considering
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the fast-charging curve of EVs, which is not constant, in particular not when the SoC rises above
80% (Witt 2023). Key metrics of the individual charging and the aggregated electricity grid load are
recorded, analysed and visualised to reveal the charging site’s performance as exemplarily shown in
the results presented next.

EXPONENTIAL oETA

1l

Figure 4. Random distributions characterising negative exponential distributed EV arrivals
(left), Erlang-2 distributed charging times (middle) and Beta distributed charging demands (right)

Exemplary simulation results. Using the above outlined simulation of a finite multi-server
queueing system, we can analyse EV charging sites as they soon may become deployed along
motorways. According to the expected increase of EVs on the road, also the traffic load served by
these charging sites will accordingly rise.

The recorded performance samples are statistically analysed and visualized to determine the
efficiency and effectiveness of different charging site configurations. For the EV drivers, the
waiting times and the amount charged in the intended charging time are of prime relevance. For the
charging site operator and the adjacent distribution grid operator, the aggregated load and the
efficiency of the peak power limitation provided by the dynamic load limiting implemented by
smart charging are of prime concern. In Figure 5 the waiting time performance for two differently
configured charging sites is compared.

"--rﬂfrg(

Charging Site Queueing Characteristics Charging Site Queueing Characteristics

M/E/S/15 Queueing System (25000 samples per evaluation point) M/E/10/30 Queueing System (25000 samples per evaluation point)
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sFigure 5. Waiting time over increasing EV arrival rate for two exemplary
charging site configurations

The charging site shown on the left side provides five charging points and ten waiting places,
the site on the right has ten charging points and twenty waiting spaces, i.e., twice the size. In
consequence, the site shown on the left becomes overloaded at an arrival rate of ten EVs per hour,
whereas the site on the right remains uncritical for up to twenty EV arrivals per hour. Practically,
waiting times up to few minutes are commonly accepted by the EV drivers, thus five charging
points yield in average acceptable waiting times up to six EV/h and ten charging points for up to 15
EV/h, which shows the efficiency of size effect that here twice the number of charging points can
more than twice the traffic load with the same performance.

Figure 6 shows the change of the site power demand for increasing EV arrival rates.
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Charging site Energy Characteristics Charging site Energy Characteristics
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Figure 6. Waiting time over increasing EV arrival rate for two exemplary charging site
configurations

The bold blue line in Figure 6 (Energy per charged EV) shows the average amount of energy
charged. This amount drops slightly with increasing traffic load (EV/h) due to the dynamic site
power limitation. The narrow blue lines with triangle markers above and below show the 90% and
10% percentiles of the samples. The bold red line shows the average battery capacity not charged
when the EV leaves the charging site after completing the randomly determined charging time. This
curve shows the opposite behaviour compare to the blue line because the sum of the two needs to
equal the mean battery capacity of the charged EVs. We see that in average the battery is loaded to
nearly 80%, which indicates that the simulated mean charging time is in average sufficient.

The bold magenta line in Figure 6 (Average power per charging point) shows the average

power consumed by each charging point. It is calculated as P = 2Pi and increases as the frequency

n
of vehicle arrivals increases causing parallel charging events. Because the total site power is
limited, which is shown by the narrow magenta line on the top, the dynamic power limiting (smart
charging) causes that it levels off slightly below the maximum possible. For the smaller
dimensioned charging site on the left side in Figure 6 this line rises rapidly as arrival rates (the
frequency of cars arriving for charging) increase. Doubling the capacity shifts the rise to higher
arrival rates, which is shown on the right side.

The narrow lines without markers show the standard deviation in respect to the equally
coloured results. A higher deviation indicates higher variability and accordingly less stable charging
performance. To better visualise the variance of the site power, Figure 7 shows the histograms of
the site power for increasing arrival rates.
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Figure 7 — Site power demand histograms over arrival rate for the two exemplary charging site
configurations
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Notably, we see ripples caused by the maximum power the charging points offer, here 100 kW
each, which are in particular visible at low arrival rates. The EVs per se, could charge with higher
power. Still, the maximum site power, which for five charging points is limited to 300 kW (left
side) and to 600 kW for ten charging points (right side), is in both cases dominant at high arrival
rates indicating a reduced charging performance per EV.

If we configure a charging site with five charging points that provide 150 kW each and 500 kW
maximum site power, and consider a more diverse mix of EV types including 30% hybrid EVs that
cannot use fast charging, i.e., are limited to 22 kW maximum charging power, we see in Figure 8
that the site power limit is not so often reached even though five times 150 kW would be beyond

the site power limit. This example represents a good charging site configuration, where
performance and effort are better balanced.
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Figure 8 — Site power histogram over increasing EV arrival rate for a well-configured
charging site

By analysing the different performances of different charging site configurations, potential
bottlenecks and areas for improvement in the EV charging infrastructure can be identified.
Visualization of key statistical measures such as mean, standard deviation, and confidence intervals
are utilized to provide a comprehensive view of the system's performance for increasing traffic
loads.

Comparison with analogous simulation options. The customised tool fulfils the criteria
required to directly generate publishable R&D results, as requested. Tables 1 to 3 show that
analogous simulation tools provide different features but not the precise set required by the client,
the eAlloc project team, for whom the software tool is developed exclusively. The tools compared
serve quite different purposes, including a PhD thesis on the topic (Jansson 2022), simple
visualisation and on-line calculators for multi-server queueing systems (Lau 2017, Kabeer 2021,
Ansari 2019) and complex real-world simulation tools (Witt 2022, Lee 2019, Liu 2021) interlinked
with other simulation tools.

Table 1 reveals that no other tool supports selecting a distribution function to model the arrival
and charging time distribution. KTH and EVCsim import pdfs and patterns respectively, which is
very versatile. Witt and ACN rely exclusively on gathered field data, which focuses the studies on
real scenarios of today. Smart Charging in respect to the grid access limitation PS¢ was no where
found. Most studies considering the energy demand focus primarily on energy costs but consider no
electricity grid access power limitation or peak power costs to be paid by the site owner.
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Table 1. Features of exemplary EV charging simulation tools

features traffic load and charging time modelling charging technology

mean pdf data pattern function DC p%iég

+ +

>
@]

tool
eAlloc + - - - +
KTH - + - - -
Witt - - + - -
ACN - - + - -
EVQS
MSQS
Qsim
EVCsim - - - + -

+ -

+| +| +
1
1
1
1

1
1
1
1
+| | | ] | ] ]+
1
1

Table 2 reveals that the waiting time T,j IS evaluated by most tools, only MSQS focuses on
the charging time T.,. Some tools also provide the waiting probability pw.i and EVQS the mean
queue length Lquewe. Naturally, the plain queueing system tools EVQS, MSQS, and Qsim do not
yield information on the charging performance and the power demand. Those that model also the
charging itself, focus on the charged energy E.,, the SoC or AE, at departure. The total power
demand Y P, is also a topic in most of the studies, even though no grid access limit is commonly
considered.

Table 2. Simulation aims of exemplary EV charging simulation tools

aims queueing performance charging performance
t(-)-(-)| Twait Pwait Lqueue Tch Tin—out Ech SoC chh
eAlloc + - - + + + + +
KTH + + - + - + + -
witt + - - - - - +
ACN + - - - - - + +
EVQS + - + - - - - -
MSQS - - - + + - - -
Qsim + + - + - - - -
EVCsim + + - + - + - -

Table 3 shows that all except one lack the scientific rigour to include information on the
stochastic quality of the derived statistical results: Non includes confidence intervals (ci) or
standard deviation (std), only EVCsim (Liu 2021) states at least mean and maximum, as well as the
median. Lacking access to the source code of some tools, some properties could not be determined
and needed to be derived from the provided results. ACN-Sim does not bother to perform a
statistical evaluation and delivers simply the gathered traces, delegating the data processing to the
user.

The plain queueing system tools without charging performance and power demand
considerations assume negative exponential inter-arrival and service time distributions, i.e., a
Markovian system, for which the mean values can be analytically calculated (Kleinrock 1975). K.
Lau mentions in the presentation in the EVQS (Lau 2017) documentation on GitHub that in practice
the service time appears not to be negative exponential distributed and suggests to use a Gamma
distribution instead. Actually, the empirically achieved histogram presented shows similarity with
an Erlang-7 distribution, which is more smooth than the Erlang-2 distribution assumed for the
above presented results.
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Table 3. Outputs of exemplary EV charging simulation tools

outputs data quality means and formats
t(-)-(-)I mean ci std traces peaks GUI Ccsv SVG
eAlloc + + + - + + + +
KTH + - - - - +
Witt +
ACN - - - + +
EVQS + +
MSQS + + +
Qsim + +
EVCsim + + + +

Conclusions. The customised charging site simulation tool developed, attempts to fill the
existing research gap by enabling the user to predict the demand for, and performance of, fast
charging along motorways. It focuses on key parameters such as the aggregated power demand and
expected charging performance, and the expected waiting time and need for parallel recharging
facilities (charging points). Calculated expectable waiting times are for example used for the multi-
objective EV assignment optimizer, developed as part of the R&D project eAlloc (eAlloc 2021), to
consider the EV driver’s common wish not to wait for the recharging. The presented study seeks to
enhance the current understanding of fast EV charging infrastructure requirements and to facilitate
more efficient and user-friendly charging solutions and related services that support widespread EV
adoption. The project objectives are:

o to consider the dynamic power demand of fast charging,

o to simulate charging sites offering many charging points in parallel,

o to conveniently visualize the statistical results,
such that both, the characteristics of different charging site configurations and the electricity grid
access demands, become understandable and apparent. The results show the demand for the number
of charging points at charging sites along motorways and the expected power demand for any future
EV traffic load. Thereby, the strategic planning for electric vehicle infrastructure development is
supported and stakeholders can make informed decisions regarding the deployment of charging
infrastructure extensions to meet future needs.

The developed tool enables future research that provides valuable insights into the dynamics
and requirements of smart DC charging as it will probably be required along motorways in the near
future when mobility is primarily based on electric vehicles. The presented approach shows a com-
prehensive tool to better understand the properties and performance issues of EV charging sites
along motorways. The findings highlight the importance of adequate planning and investment in
charging infrastructures to conveniently accommodate the anticipated electrification of the mobility
sector. High-quality visualization of the analysed site’s performance using vector graphics provides
the quality necessary for high-quality publications in scientific media.

The event-based simulation of the finite multi-server queueing system that models a charging
site enables thorough statistical analysis, including not only mean values but also confidence inter-
vals (ci) and higher moments, e.g., the standard deviation. Approximating possible future traffic
loads by generated random traffic using different distribution functions that can be chosen to mimic
the statistical properties (mean and histogram) of recorded traffic data enables upscaling by simply
increasing the mean value. Each implemented distribution can be checked by generating a histo-
gram from a generated sample and comparing that with the analytically calculated pdf as shown in
Figure 4. The event-based simulation itself can be checked by simulating a Markovian queueing
system and comparing the statistically gained waiting time curve with the analytically calculated as
shown in Figure 3.
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