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Introduction 
Recently in academic and industrial fields there was a considerable increase in interest on electronic 

noses, because the possibility to make direct measures with few refinements and because its facility of 
implementation [1]. An electronic nose has many applications, for example: liquid and solid smell recognizers, 
perfumes and chemical reagents [2-4], illness detection [5], breath alcohol measurement [1], quality of potable 
water monitoring [6], among others. 

An electronic nose in almost all cases is implemented with Artificial Neural Networks, because its noise 
robustness that can exist in analyzed samples [7-8], moreover it has a great capability of generalization, that lead 
to new samples inferences, corrects in most of cases, outside the training samples set. The application 
implemented in this work is the classification of heat power of a fuel gas. 

When there are many variables to be analyzed, a principal component analysis is in general applied to 
minimize the dimensionality of the input space, keeping as most information as possible in data [9-10]. 

The six gas sensors measures in our apparatus were analyzed into two approaches: the use of raw data, 
and the use of data processed by a principal component analysis with fewer sensors. 

Traditional methodologies to measure the heat power of a fuel gas can be divided in three categories [11]: 
combustion of a gaseous sample inside a calorimetric bomb, combustion of a gas in an open flame of a gas 
burner, and combustion without a flame on a catalyst. Those methods require in general expensive machinery. 
An embedded system of classification can be a low cost alternative in classification of the heat power of a given 
fuel gas. 

This work is in its initial phase. The proposed objective is to develop an embedded system to recognize 
the heat power of a fuel gas. A matrix of six sensors will be used to measure the concentration of different gases. 
However, as the measure is in its initial stage, synthetic data have been generated to simulate the sensors 
behavior. These data was applied in some artificial neural network topologies and an fuzzy inference system, and 
they are being implemented in hardware, using DSP’s and micro controllers. 

Methodology and Experimental Results 

A Heat Power Recognition Using Artificial Neural Networks 

A system that consists of a chamber with six SnO2, was used to recognize the heat power of a given fuel 

Fig. 1. Synthetic data used to create the ANN and FIS. Rnorm is defined in equation (1) 
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gas pattern. They detect concentrations of different gases (CO, CH3, CH4, etc.). The gas fuel was injected in this 
chamber with N2 gas. The concentration ratio of this mixture was adjusted with flow meters. Given a fixed fuel 
gas flow (3ml/min), the N2 gas flow was fixed by two flow meters. This gas mixture was applied in the sensor’s 
chamber by the adjustment of another flow meter R7. Because the measurements are in its initial state, few 
experimental data of only one pattern of gas was acquired with concentration of 5.155ppm of gas fuel. The 
variation of the N2 gas flow will simulate the others patterns of gas fuel. 

Some measures were taken with sensors steady state values of resistances before and after each injection 
of the fuel. With these data, a database of data was mounted with six features, corresponding to the sensors 
values. This database was subdivided in two subsets, a training and a test data sets with equal size. 

Synthetic data was used because only few experimental data existed in the moment this paper was made. 
Three hundred data points was created following gaussian distributions, which corresponds to a hundred for each 
fuel pattern. Synthetic data of six sensors for a given temperature and pressure values are shown in Fig. 1. 
Standard deviation and mean of the normalized resistance for the first pattern was obtained with the current 
available measures. As a first approach, the different patterns were obtained with the same standard deviations of 
the first class for each sensor, but the second pattern mean was set to a 1/3 ratio of the first pattern, and the mean 
of the third pattern as a ratio of 1/2. 

The data in red are the first fuel pattern with higher heat power value. The second pattern in blue has the 
least heat power value. The third pattern in green is a fuel pattern with an intermediate heat power value. Fig. 2 
shows a scattered plot of a given sensor normalized resistance versus its initial value. The normalized resistance 
value is defined in equation (1): 

RNORM = (RINITIAL – RFINAL) / RINITIAL                                       (1) 

Two topologies of ANN was tested to recognize the gas fuel patterns: backpropagation and LVQ. To the 
backpropagation ANN, two train functions was used, traingdx (descendent gradient with adaptive momentum) 
and trainlm (Levenberg-Marquardt train function), with or without the principal component analysis. 

Backpropagation ANN’s without PCA had six neurons for the input and hidden layers, and three neurons 
for the output layer. Backpropagation ANN’s with PCA had four neurons for the input and hidden layers, and 
three neurons for the output layer. 

Each ANN was trained 100 times. Stop criterion was mean square error less than 0.01 or error gradient 
less than 0.001. Data were divided in two subsets, which 150 data points was used to train and 150 data points 
was used to test the ANN, both with 50 different data points of each fuel gas pattern. 

Counts of correct inferences of ANN were made with the test data set. The backpropagation ANN using 
the training function ‘trainlm’ was the network that had more corrects inferences, but many times it had some 
anomalies in the training step. The training of LVQ network was limited to 200 epochs, because it was observed 
that the mean square error had oscillations after the epoch of number 50. 

NeuralWorks was another software used to train the ANN’s. The same train and test data sets were used 
in this program. It had six neurons for the input and hidden neurons, and three neurons for the output layer. 

A backpropagation ANN with Delta training rule were used. The network was trained ten times without 
the “MinMax” table, and more ten times with this table. According to the “MinMax” table records maximums 
and minimums values of each input data of each network layer. It’s used to perform a data pre-processing that 
applies a scale in layer’s input data. Thus it prevents the saturation of the activation function that stops the 
learning process of the neurons. Training stop criterions were maximum iteration of 50000 epochs, or the root 
mean square error less than 0.001. The maximum epochs were fixed to ensure that the ANN doesn’t suffer 
“overfitting”. 

A LVQ neural network was also trained. The learning rule for the firsts 4500 iterations used a conscience 
factor of 1.0, which encouraged all the neurons in the learning step. For the others 2250 iterations, the training 
rule did a refinement between patterns. Generalization results of NeuralWorks’ ANN’s were better than the 
others networks. Thus, the chosen network to obtain the C code for the neural network implementation in 
hardware was the backpropagation ANN with “MinMax” table. 

Alcohol quality recognition using Artificial Neural Networks 
The same system of Taguchi sensors was used to classify the quality of vapor of alcohol fuel. Two 

patterns of alcohol were considered: good quality (with concentrations between 93% and 98.3%) and the bad 
quality (others concentrations). The alcohol fuel was injected in the sensors chamber by a syringe. Flow meters 
devices were replaced by a tube system. A ventilator and an air filter containing a humidity absorber substance 
were used to clean the chamber. The data acquisition system was the same. 

Two ANN’s topologies were tested to recognize gas fuel patterns, backpropagation and LVQ, with or 
without PCA. ANN’s without PCA had six neurons for the input and hidden layers, and two neurons for the 



  
 ISSN 1999-9941 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ ТА КОМП'ЮТЕРНА ІНЖЕНЕРІЯ. 2004. №1 

 
 

 46

output layer. ANN’s with PCA had four neurons for the input and hidden layers, and two neurons for the output 
layer. 

 
Fig. 2 shows a scattered plot with the experimental data of alcohol fuel. Dark blue points represents good 

alcohol pattern, and pink points represents bad alcohol pattern. Dark blue poins inside pink points region can 
explain why ANN’s had some problems of generalization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Scattered plot of normalized resistance variance versus initial resistance obtained by experimental data in 
sensor 6 

Simulations of injection of Alcohol, has lead to creation of a synthetic database. These data was helpful to 
analyze the effects of pre-processing of data in the training performance of a ANN backpropagation. 

Stop criterion of the ANN were root mean square error less than 0.01. DataSculptor software was used to 
automatically pre-process the data. With the “brief” pre-processing data method, DataSculptor applied a scale in 
data, and divided the database in test and train subsets. The use of pre-processed data accelerated the ANN 
training step in a ratio of 0.15. 

Hardware implementation of ANN 
An ANN trained with NeuralWorks software was implemented in an Analog Devices DSP kit. The 

NeuralWorks software transformed the trained ANN in a C language program code. No further hardware self-
learning steps were considered. Thus, the code generated by NeuralWorks only had mathematical operations, 
representing the trained neural network. 

The initially implemented system was the quality of alcohol fuel recognizer. As a first approach, the test 
data set was included in the DSP kit program. With a button of the kit, all test data was read, and the results of 
the trained ANN was shown in two LED’s of the kit. The simulation of the trained ANN had the same results of 
the implemented in the DSP kit. 

A dedicated hardware to recognize the quality of alcohol fuel was designed in our laboratory. It has a 
micro controller, an EEPROM and a FLASH chips. The ANN program was stored in the EEPROM chip, and the 
synaptic weights were stored in the FLASH chip. As the amount of chip memories was small, the ANN program 
had to be optimized. This system only process the final and initial response sensor values in steady state. With 
these values, it calculates and shows the response of the ANN in its LED’s. 

Fuzzy Inference System 
A FIS were used to solve the problem of classification of gas heat power patterns. FIS’s rules were 

extracted from the synthetic data. According to [12], rules are extracted from estimative of data clusters, and 
each data cluster represents a rule which relates an input region with an output pattern. 

Subtractive clustering made the Fuzzy rules extraction. And were obtained a center point for each cluster 
of each pattern. The features analyzed were the sensor initial resistance and its normalized variation shown in 
Fig. 3. 

Results of FIS without optimizations were not satisfactory. The first 150 samples were applied to FIS 
sequentially, one by one, during one second for each sample. Among them the first 50 samples were from the 
first pattern, the next 50 were from second pattern, and the last 50 were from the third pattern. FIS output values 
ranging from 0 to 0.25 recognizes the first pattern. Output values ranging from 0.25 to 0.75 recognizes the 
second pattern. And finally, output values ranging from 0.75 to 1.00 recognizes the third pattern.. 

The behaviors of the ANN’s and FIS couldn’t have been compared, because the FIS are still in its initial 
step of design. More accurate differentiation of these two systems would be obtained when more experimental 
gas fuel data patterns is acquired, and when the FIS is more developed. 
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Fig. 3. Scattered plot of normalized resistance variation versus initial resistance of sensor 2 with synthetic data 

Conclusions 
It has been shown that implementation of an embedded system for classification of heat power of a fuel 

gas or classification of alcohol fuel is possible. It can be done with an ANN or a FIS. The ANN had a high rate 
of accurate responses, which shows its capability of generalization. 

Principal Component Analysis is an important tool to reduce the input space dimensionality of a system. 
It can accelerate the training step of a ANN. However, it can prejudice the capability of generalization of the 
network. Sensors that apparently don’t have sufficient sensibility can help the correct classification of a pattern. 
Also it can be shown that data pre-processing accelerate the training step of an ANN. 

FIS can be an alternative solution to the problem. An important advantage is that its model is accessible. 
ANN’s models are difficult to obtain, because each time it is trained, different models are obtained. And the user 
can’t access these models. ANN’s behavior is like an non-linear black box. 

It was observed that implementation of an ANN in hardware is easier than the implementation a FIS in 
hardware. It’s because the architecture of an ANN is easier than the required architecture to implement a FIS. 
The most difficult function in a backpropagation ANN is the non linear activate function. FIS requires several 
mathematical calculi in fuzzification, inference and defuzzification steps. 

This work requires the acquisition of more experimental data of different fuel gas patterns, and new ANN 
training with these new data. With more experimental data, detailed analysis of the sensor’s signal in time can be 
done. Analysis of sensor’s several time responses will be possible. Thus, a gas fuel pattern can be faster 
recognized, improving the performance of the acquisition data system. 

The FIS can still be enhanced with a method of automatic optimization of its membership functions. An 
option is to use a correction function based on gradient descendent. 

Hardware implementation of the fuel gas is still in its initial stage. It will be necessary to implement input 
analogical signal circuits from the sensors, an operator’s interface indicating the time in which the embedded 
system will initiate or terminate a treatment of the electric signals of the sensors, and finally, it will need 
command software for all this hardware. 
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