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Introduction 
Communication networks are often modeled by graphs, in which the vertices represent the nodes and the 

edges represent the feasible communication links. This model allows one to measure the properties and 
performance of the network by different graph theoretic parameters.  

When designing reliable communication networks, the least that we must guarantee is that, after failure of 
some nodes or links, the surviving network still allows communication between all non-faulty nodes. This 
implies constraints on the connectivity of the corresponding graph. The k-vertex connectivity (respectively k-
edge connectivity) is associated to the capability of a network to resist to the failure of any subset of k – 1 nodes 
(respectively links). A general network design problem which requires the underlying network to be resilient to 
link failures is known as the Edge Connectivity Survivable Network Design Problem. In fact, 2-edge 
connectivity is a major feature in today’s fast and reliable communication networks, as a single transmission 
failure could cause intolerable losses.  

Most network optimization problems that require finding minimal subgraphs satisfying given 
connectivity constraints are NP-hard. As a result, it has become imperative to design approximation algorithms 
for such problems (e.g. [5], [2]). Unfortunately, the 2-edge-connected spanning subgraph problem is proven to 
be MAX SNP-hard [3], meaning that it cannot be approximated to less than a particular multiplicative constant, 
unless . On the other hand, several algorithms have been proposed that guarantee satisfactory approximation 
ratios, starting from 3/2 [6] and going down to 17/12 [1], 4/3 [8], 4/3 – ∊ [7] and finally 5/4 [4]. However, it is 
quite unlikely that a lower ratio will be achieved soon, because this would require finding new lower bounds on 
the optimal solution.  

It is worth noting that only the first algorithm, due to Khuller and Vishkin, requires linear time with 
respect to the number of edges of the input graph. All the rest are significantly more time-consuming, which 
renders them impractical for use in virtual topologies over large networks, where speed is of the essence. 
Therefore, in this paper we focus on devising heuristic techniques to improve the aforementioned linear-time 
algorithm, without increasing its time complexity. We also implement several well-known lower bounds on the 
optimal solution. Thus, we are able compare the performance of the algorithm with and without heuristics, using 
random graphs as inputs, and draw useful conclusions.  

Heuristics 
Our heuristic improvements to Khuller and Vishkin’s algorithm [6] involve:  

• The choice of the next vertex to be visited by the Depth-First Search routine, according to a 
primary and a secondary criterion, as implemented in the selectNextVertex() function.  

• The removal of DFS tree edges which are no longer necessary because of the back edges 
included in E

H 
by the algorithm. This optimization takes place after the Depth-First Search and is 

carried out by the PostProcessing() procedure.  
 

The improved algorithm is shown below in pseudocode. In large part, we follow the notation used in [6]. 
In particular:  

• Assume that all vertices are numbered by the order in which they were visited by the DFS, so 
that the operators < and > make sense when used on vertices.  

• Every vertex is initially unvisited. When the DFS routine visits it for the first time, it becomes 
discovered. When we finally exit from the vertex, it is marked as finished.  

• H is the requested spanning subgraph and E
H 

its edge set.  
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• low[v] is the vertex with the smallest DFS number that can be reached by following a single back 
edge originating anywhere in the DFS subtree rooted at v.  

• lowH[v] is defined to be the vertex with the smallest DFS number that can be reached by 
following a single back edge belonging to EH and originating anywhere in the DFS subtree rooted 
at v.  

• savior[v] is the vertex in the DFS subtree rooted at v which is connected to low[v] by a back 
edge.  

––– Algorithm for 2-ECSS –––  
(* main routine *)  
EH ← _;  
DFSHeur(v0, nil);  
PostProcessing(v0);  
procedure DFSHeur(v, u); (* u is the parent of v in DFS tree *)  
mark v discovered;  
low[v] ← v;  
lowH[v] ← v;  
savior[v] ← v;  
while v has unvisited neighbors do begin  
w ← selectNextVertex(v);  
EH ← EH _ {(v, w)};  
DFSHeur(w, v);  
low[v] ← min{low[v], low[w]};  
if low[v] changes by the above then savior[v] ← savior[w];  
lowH[v] ← min{lowH[v], lowH[w]};  
end;  
for each w _ Adj[v] do  
if w is discovered and w ≠ u then begin (* (v, w) is a back edge *)  
low[v] ← min{low[v], w};  
if low[v] changes by the above then savior[v] ← v;  
end;  
if lowH[v] = v and u ≠ nil then begin  
(* edge (u, v) is threatening to be a bridge; add the back edge (savior[v], low[v]) to cover it *)  
EH ← EH _ {(savior[v], low[v])};  
lowH[v] ← low[v];  
end;  
mark v finished;  
end DFSHeur;  
function selectNextVertex(v)  
for each unvisited w _ Adj[v] do begin  
dG – H ← number of unvisited neighbors of w;  
x ← lowest discovered neighbor of w (nil if there is none)  
(* primary criterion: choose vertex with the fewest unvisited neighbors *)  
if dG – H < bestD then begin  
bestD ← dG – H; bestX ← x;  
bestVertex ← w;  
end  
(* secondary criterion: choose vertex with the highest lowest discovered neighbor *)  
else if dG – H = bestD and (x = nil or x > bestX) then begin  
bestX ← x;  
bestVertex ← w;  
end;  
end;  
return bestVertex;  
end selectNextVertex;  
procedure PostProcessing(root) (* remove some redundant DFS tree edges *)  
for each v ≠ root do  
redundant ← false;  
u ← parent of v in the DFS tree;  
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if there exists some w such that u = lowH[w] then begin  
if (v, low[v]) _ EH then redundant ← true;  
if there exist two children x, y of v in the DFS tree such that low[x] ≠ v and  
low[y] ≠ v then redundant ← true;  
end;  
if redundant then EH ← EH \ {(u, v)}; (* edge (u, v) can safely be deleted *)  
end;  
end PostProcessing; ■  
Let y be the vertex with the smallest DFS number that is a neighbor of v. If there exists a descendant w of 

v such that y = low[w], then savior[v] will not be equal to v. This fact is implied in the above code, yet it 
deserves to be stated explicitly because in some cases it renders the post-processing more effective.  

Lower Bounding 
The performance of our algorithm is measured against a set of lower bounds on the optimal solution, 

since it would be overwhelmingly time-consuming to find the optimal solution itself. One obvious lower bound 
is the number of vertices n. Another is the size of a tree carving of the input graph G, as explained in [6]. This 
bound is directly related to the number of edges in the solution found by the algorithm, so practically no extra 
calculations are needed.  

We also used a more sophisticated idea, due to Vempala and Vetta [8]. It consists of finding a minimum 
sized spanning subgraph in which every vertex has degree at least two. The aforementioned problem is called 
D2. It should be noted that the optimal solution to D2 may not be connected. Given that any two-connected 
graph must have minimum degree at least 2, it is straightforward that the optimal solution to D2 provides a lower 
bound on the size of the optimal solution to 2-ECSS.  

D2 is solvable in polynomial time by a two-step procedure.  
First, find a maximum sized subgraph of G in which every vertex has degree at most two. It is easy to see that 

the solution to this problem consists of disjoint cycles and paths, which means that the problem asks for a 
maximum cycle – path cover of the graph. This can be computed efficiently via a simple reduction to 
maximum bipartite matching, as described below.  

Second, add one more edge to each of the end vertices of every path found.  
Given a simple undirected graph G with vertex set { and edge set E, construct a bipartite graph H with 

vertex set {} and edge set } } n {. Find a maximum-cardinality matching M in H. This takes } O time by using a 
variant of the Hopcroft – Karp bipartite matching algorithm. It is crucial that we impose the following restriction 
on the computation of M: for every j, k, at most one of the edges and ( is allowed in M.  

Let } _ ) ) . The edge set P defines a set of disjoint paths in G. This is true because M is a matching, 
which means that any vertex j has at most one “incoming” edge () (corresponding to the at most one edge () and 
at most “outgoing edge” () (corresponding to the at most one edge ). The paths defined by P are all simple and 
some of them may be closed, i.e. cycles. The time to construct P from M is O. Therefore, the time complexity of 
finding the cover is dominated by the computation of the restricted maximum matching. Under the above 
constraints, it can be proven that M is of maximum size if and only if P is a maximum cycle – path cover of G.  

At this point, the necessity of the imposed restriction should be clear. Both edges ( and () in the bipartite 
graph correspond to the same edge (of the initial graph. Therefore, the co-existence of such edges in the 
matching M destroys the maximality of the corresponding cover P. 

Conclusions 
In this paper, we presented a set of heuristic improvements to a well-known approximation algorithm for 

the 2-edge-connected spanning subgraph problem, while preserving its linear time complexity. Furthermore, we 
implemented several lower bounds on the optimal solution, in order to assess the algorithm’s performance. Early 
tests using random graph inputs of order n = 10 to 24 showed that the heuristics produced a solution which was, 
on average, within 1% of the optimal. On those same inputs, the corresponding error percentage of the original 
algorithm was ~10%. This improvement is impressive and, since it requires only little more time to be achieved, 
may be of great practical usefulness. A complete set of computational results will be included it the final version 
of the paper. 
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