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AnHoTanmus. B nanHHOil paboTte mpejcTaBlieH MOAXOA K PEKOMEHIATENbHBIM CHCTEMaM Ha OCHOBe Kartasora. IToka3aHO MCIONb30BaHHE
Word2Vec smbennHros, npeacrasieHHbx Google. Onucana BO3MOXXHOCTb UCIIOIB30BAHHS JOTIOIHUTEIBHON OM3HEC JIOTHKH.
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Introduction

Understanding users’ preferences and proposing them the most relevant products is essential for every
commercial business which involves the process of interacting with users. As nowadays the web infrastructure
is developing rapidly, lot’s of commercial activities move to the space of the internet. Thus, the demand for rec-
ommendation systems arises. Recommendation system is an engine which goal is to recommend relevant items
to users. Many world famous companies like Netflix, Amazon, YouTube, etc, use them to attract more people to
their websites and increase their income. The recommendation systems can be divided into two groups: content
based [1] and user based [2]. Content based recommendation systems focus on the content, its taxonomy and
metadata for making predictions, while the user based ones require user interactions like clicks or ratings the
user left for items. Nevertheless user based recommendation systems are much more powerful than content
based, they require lot’s of computational power that can afford working with big data. On the opposite, when
building a content based recommendation system, the one is interested only in the catalog of items, and as a rule
the number of items is always smaller than the number of users in the system. Content based recommendation
system is a nice start for a small company that just appeared on the market of web products. With the develop-
ment of the sphere of Natural Language Processing (NLP), new opportunities for content-based recommendation
systems appeared. The new approach to recommendation systems is proposed in this article, the problem is stat-
ed as measuring the similarities between items’ metadata and is addressed as an NLP task. The system uses a
hybrid algorithm based on counting words in a statement and Word2Vec model provided by Google. The possi-
bility of using an additional business logic is considered. Finally, the results are viewed with respect to Mov-
ielens dataset.

Data preparation

Constructed system was validated using the famous Movielens [1] dataset, which contains catalogues of
movies, their metadata and intersections of users with a catalog. The columns that were used are the following:
title, movie_id and genres (Fig. 1).

As the constructed algorithm is based on content metadata — it was decided to enrich Movielens dataset
with IMDB database to get more relative columns.

movield title genres
0 1 Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
1 2 Jumanji (1995) Adventure|Children|Fantasy
2 &) Grumpier Old Men (1995) Comedy|Romance
3 4 Waiting to Exhale (1995) Comedy|DramalRomance
4 5 Father of the Bride Part Il (1995) Comedy

Figure 1 — Original Movielens data

As genres columns were already in our dataset, this field was enriched with more data from IMDB, other
columns were just added (Fig. 2).
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Figure 2 — Data after enriching with IMDB

Data transformation

The MovieLens data is made of strings which describe items’ metadata, but for an algorithm to work the
transformation of relative columns to the matrix of numbers is needed. For this purpose a hybrid transformation,
made of CountVectorizer [3] and Word2Vec [4] model, is used. CountVectorizer is a technique of counting
words in a sentence or text corpus. Each word is then represented by its frequency of appearance in a sentence

(Fig. 3).

BEFORE :
Item 1 ['action', 'adventure', 'crime']
Item 2 ——————>['drama’, ‘'action', ‘'documentary']
Stored words :
AFTER (vectorized array) : %

['action’, "adventure’, 'crime’, '"documentary’, '"drama’, 'horror’, "'mystery', 'romance’, 'thriller’]

fteml1l —— array([1, 1, 1, ®, 0, 0, @, 0, 0])

ltem2 ————array([1, 0, @, 1, 1, 0, 0, 0, 0])

Figure 3 — The usage of CountVectorizer algorithm

That gives a possibility to represent word sequences as vectors of numbers. CountVectorizer is used only
on columns that don’t have a strong semantic context (directors, writers, cast, characters, etc.) For the fields with
semantic context the other algorithm, known as Word2Vec is used. Word2Vec is a powerful machine learning
algorithm that is used in the NLP sphere for semantic text classification, finding similarity between words, etc.
Word2Vec learns the embedding space of words in which similar words (the ones that tend to appear in the same
context) are closer to each other. Thus, the learned Word2Vec embeddings can be used to represent our columns
in a numerical way and also save a semantic context of them (Fig. 4).

Let's consider the example with field ‘title’ :

After applying embeddings mapping 300d vector representing a title Similarity score between titles due to cosine similarity function
. ' 5.155273440 02, -1.01362580¢-01, 9,79510742-03, 1,66303906¢-01,
ltem | = 'LOve Actually’' [ love’, ‘actually']———3 .1 serceese.01. 2 7158731e.62, 1 77612505001 i o oz \
i
. 73 8 15 26367 H12LE234, -8.E205 0.55
. C o . 0.67307461, -9.65285645, 002636719, 0.71206034, -9.82054781,
ltem 2 m—Killer Clans' e ['Killer', 'clans'| a5 5iaree o oioiass 0 0cimtr o asrsies. o z'-,n'-:l,hu___\_/_“*
' ' . .o . 18261719, -0.069024 3. 071533, 0. 07312012, -0.0B618164 0.19 /
item 3 ——3"True Romance' —e['true’, 'romance’] —i— 0.18261710, .0.06802422, -0.0715332 | 0.O7IIOLY, -0.0BGLGNES,

01539086, 6.15680586, e

Figure 4 — Example of usage of Word2Vec model

For the purpose of representing not just a single word with Word2Vec, but the whole sentence — the em-
beddings of sentence’s words are averaged. All the highlighted transformations give a possibility to represent
content as nested matrices of number related to its metadata, thus the opportunity of using mathematical methods
for finding similarity between content can be applied.
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Algorithm
The algorithm is based on a cosine similarity, that is a mere choice for NLP tasks (1).
k(x, )=xy™ /IX]] iyl (1)

The cosine similarity is computed between each column of each item in the dataset, thus for each item we
have a matrix of similarities with others by a particular column. Because of the fact that one data column regard-
ing an item can be much more important for the final recommendation than the other one, the additional business
logic is added. The additional set of columns’ weights that can be configured manually was added. Each attrib-
ute/column matrix is multiplied by a related weight parameter that gives an opportunity to decrease/increase con-
tribution of it to the final similarity calculation. This makes the overall system more flexible and extendable to-
wards new logic. Finally, the similarity matrices by columns are averaged to produce a final similarity matrix for
an item (Fig. 5). Then, top N recommendations can be retrieved using a similarity score.

title genre

ltem 1 Siep Up [Crime', 'Drama’, 'Music']
ltem 2 The Fountain [Drama’, "Romance’]
ltem 3 The Big Short  [‘Biography’, "Comady’, 'Drama']
Jem 4 My Super Ex-Girffriend ~ [Comedy’, 'Romanee’, ‘Sci-Fi)
v x&
Embeddings representation Countvectorizer representation
0.0 4412842 0.15889141 .. 0.26611128 -0.1171873
» [fe, &, 1, 1, 1, 8, 0],
- A (6, 8,0, 1,9, 1, 0],
L 7 -0.075927723 9.84345793 -0,05554199 [1. 1; B. 1; a. ']; Dln
0 [6, 1, 8, 8, 8, 1, 1]]
0.1 #.06672249 0.0164388 0.02162679 0.0507609
0. 00146484] )
title cosine matrrix genre cosine matrix Weights
Item 1 liem 2 Item 3 liem 4 liem 1 Item 2 Item 3 ltem 4
tem1 [[[ 1. £.03200093 ©.30233066 019028558 eml [q 1. 0.40824829 ©0.33333333 0.
nem2 [ 8.832680693 1, 0.02458 0.96034439] fem 2 [ 0.46824829 1. 0.40824829 ©.40824829 enre - 2-title - 1
tem3 | 0.30233666 -0.02458 L. ) 0.29635916] ltem 3 | ©.33333333 0.40824829 1. 0.33333333) g o :
ftema | 019628558 ©.06634439 \9595359-5 L I pema L0 0.40824829 0.33333333 1. H//%)
o) -
A . —
AN / e
D (¢ (=
average(rank_1*weightl, ... rank_N*weight N)
J
Item 1 hiem 2 liem 3 ltem 4
rem1 [[1.5 0.42424875 0,48449866 0,09514279]
em2 [0.42424875 1.5 0.39595829 0.43842049]
wem3 [0.48449866 6.39595829 1.5 0.48151291)
[0.09514279 ©.43842049 0.48151291 1.5 11

liem 4

Figure 5 — Example of similarity calculation on two columns of data

Experiments

Experiments were conducted with respect to different weights sets. For each set of weights two experi-
ments were done. For each experiment the item was randomly chosen and the top-4 related recommendations by
similarity score were shown. From the first experiment (Fig. 6) it’s obvious that given and predicted movies
have similar titles by semantics and overlapping genres, as the highest weights were set to genre and title col-
umns.

With different weights, the other picture appears. From the second experiment (Fig. 7), it’s obvious that
items have the biggest similarity by such fields as: characters, cast, directors, which is not a surprise if to look at
weights.
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movield title year tconst titleType genres characters nconst  directors  writers cast
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‘directors': 2,
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ACTUAL ITEM —————— - C’D”" IR (T e ‘Comedy. ; I Requa, ‘Alec Baldwin',
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Heights = {'title': 10, Family'] Butch®... 'nmO000. .. Ficarra'] Maguire...
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'writers': 1,
‘cast': 4 movield tile  year  tconst titleType genres characters nconst directors writers cast
. ]
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Figure 6 — The first experiment with different weights sets
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Figure 7 — The second experiment with different weights sets

Summary and further work

Nevertheless, the proposed system is not based on user activity, it has lots of advantages. It’s flexible, not
power consuming, easy to extend and flexible. Addressing the issue of recommendation systems as an NLP task,
gives a lift to usage of novel NLP techniques like BERT [5]. On the opposite side, it’s much less powerful than a
user based system and is heavily dependent on the quality of catalog metadata. The particular system can also be
used in ensemble with a user based recommendation system to construct a hybrid system. To sum up, the pro-
posed algorithm can be used as an alternative to user based system and is an adequate choice for companies
which just started their activity on the web market.
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