EXPERT SYSTEMS FOR ANALYSIS OF BIOMEDICAL INFORMATION IN THE DIAGNOSIS OF ACUTE LEUKEMIA
DOI:
https://doi.org/10.31649/1999-9941-2024-59-1-158-165Keywords:
acute leukemia, diagnosis and therapy, biomedical image, images of blast and non-blast blood cellsAbstract
This research helps to further improve the knowledge, accuracy of diagnostic techniques. It also plays an important role in the diagnosis of acute leukemia treatment today. The application of various technologies, the sharing of experiences and ideas, and even ethics all represent significant advances that will have a revolutionary effect on medical care for patients as well as improve accuracy in diagnosis. A most significant contribution is the development and introduction of technology, especially artificial intelligence (AI) or machine learning. The study illustrates how artificial intelligence-based models may be able to help in the evaluation and interpretation of biomedical data, providing more accurate diagnosis and facilitating decision-making. Trained on large databases, such models show promise in the detection of subtle patterns suggestive of different leukemia subtypes that can lead to more accurate and tailored treatment modalities. Looking ahead, the future of acute leukemia diagnosis is ripe with potential and challenges alike. Exploring novel biomarkers, incorporating advanced imaging techniques, and leveraging emerging technologies like blockchain for data security represent promising avenues for advancement. However, addressing challenges such as regulatory compliance, ethical considerations, and the complexity of identifying suitable drug candidates remains pivotal for responsible evolution.
References
Abdeldaim, A. M., Sahlol, A. T., Elhoseny, M., & Hassanien, A. E. (2018). Computer-aided acute lymphoblastic leukemia diagnosis system based on image analysis. Advances in Soft Computing and Machine Learning in Image Processing, 131-147.
Ahmed, I. A., Senan, E. M., Shatnawi, H. S. A., Alkhraisha, Z. M., & Al-Azzam, M. M. A. (2023). Hybrid techniques for the diagnosis of acute lymphoblastic leukemia based on fusion of CNN features. Diagnostics, 13(6), 1026.
Ansari, S., Navin, A. H., Sangar, A. B., Gharamaleki, J. V., & Danishvar, S. (2023). A customized efficient deep learning model for the diagnosis of acute leukemia cells based on lymphocyte and monocyte images. Electronics, 12(2), 322.
Arber, D. A., Borowitz, M. J., Cessna, M., Etzell, J., Foucar, K., Hasserjian, R. P., ... & Vardiman, J. W. (2017). Initial diagnostic workup of acute leukemia: guideline from the College of American Patho-?ogists and the American Society of Hematology. Archives of pathology & laboratory medicine, 141(10), 1342-1393.
С. В. Павлов, Й. Р. Салдан, О. В. Карась, і С. В. Тимчик, «Аналіз методів і систем діагностики ді-абетичної ретинопатії», Опт-ел. інф-енерг. техн., вип. 46, вип. 2, с. 135–141, 2023.
Л. Цзіньцюн і С. Павлов «Експертна біоінформаційна система діагностики форм гострого лейкозу на основі аналізу біомедичної інформації», ІТКІ, вип. 58, вип. 3, с. 84–93, 2023.
Wójcik, W., Pavlov, S., Kalimoldayev, M. (2019). Information Technology in Medical Diagnostics II. London: Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages, https://doi.org/10.1201/ 9780429057618.
Chen, K. X. (2020). Academician kai-xian chen talks about the development of traditional chinese medicine and global medicine. World Journal of Traditional Chinese Medicine, 6(1), 1-11.
Chiaretti, S., Zini, G., & Bassan, R. (2014). Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterranean journal of hematology and infectious diseases, 6(1).
Cicconi, L., & Lo-Coco, F. (2016). Current management of newly diagnosed acute promyelocytic leukemia. Annals of Oncology, 27(8), 1474-1481.
Crow, H. (2012). 1 Scaling Technique for Web Based Management Systems in Bioinformatics. Life Science Journal, 9(3).
Davis, A. S., Viera, A. J., & Mead, M. D. (2014). Leukemia: an overview for primary care. American family physician, 89(9), 731-738.
Estey, E. H. (2012). Acute myeloid leukemia: 2012 update on diagnosis, risk stratification, and management. American journal of hematology, 87(1), 89-99.
Grimwade, L. F., Fuller, K. A., & Erber, W. N. (2017). Applications of imaging flow cytometry in the diagnostic assessment of acute leukaemia. Methods, 112, 39-45.
Haferlach, T., Kohlmann, A., Wieczorek, L., Basso, G., Te Kronnie, G., Béné, M. C., ... & Foa, R. (2010). Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. Journal of clinical oncology, 28(15), 2529.
Harrison, C. J., & Johansson, B. (2015). Acute lymphoblastic leukemia. Cancer Cytogenetics: Chromosomal and Molecular Genetic Aberrations of Tumor Cells, 198-251.
Downloads
-
PDF
Downloads: 37