INFORMATION TECHNOLOGY FOR THE CONSTRUCTION OF INTELLIGENT SYSTEMS FOR DETECTING FRAUD DURING MOBILE APPLICATIONS INSTALLATION
DOI:
https://doi.org/10.31649/1999-9941-2019-44-1-4-16Keywords:
fraud detection, anomaly detection, mobile application installation, data mining, information technology, intellectual systemsAbstract
Information technology for the construction of intelligent systems for detecting fraud during mobile applications installations, which is desirable to use in developing such a class of systems, is proposed in this paper. The intelligent processing of available data by the user is done. The scaling which is based not on the value of the feature, but on the end-point information of the feature, is proposed based on this intelligent processing of the data. A system with an intellectual component - the formation of a knowledge base that will allow fraudsters to be identified and which will include anomaly analysis rules - was proposed, so that the emergence of a new anomaly in the data allows for the creation of a new rule. Such knowledge base can be expanded due to the possibility of an emergence of a new kind of anomaly in data (fraud). The received set of rules will allow creating a generalized fraudster's fingerprint, noting even the new and unknown for experts fraudulent patterns, based on the algorithms developed in the work. The classification of suspicious users to a class of fraudsters or organic users is made using fuzzy logic. The information technology for the construction of intelligent systems that will be able to adapt to the emergence of new types of fraud is proposed based on the proposed intelligent processing of available user data, the scaling by end-point information, and the development of knowledge bases. According to the tasks which should be solved by such intelligent systems, their structure is proposed: subsystem of user data characteristics identifying; subsystem of overcoming heterogeneity; subsystem of classification model training; subsystem of classification; subsystem of fraudsters database formation; subsystem of knowledge base (for detecting fraud) formation; subsystem of data mining and user patterns formation; subsystem of general fraudster fingerprint prediction. The proposed information technology for the construction of intelligent systems allows processing of various input data, which in the process gives the opportunity to form a generalized fraudster fingerprint.
References
A. A. Yarovyi, O. N. Romaniuk, I. R. Arseniuk, T. D. Polhul «Vyiavlennia shakhraistva pry instaliuvanni prohramnykh dodatkiv z vykorystanniam intelektualnoho analizu danykh», Naukovi pratsi Donetskoho natsionalnoho tekhnichnoho universytetu. Seriia: «Informatyka, kibernetyka ta obchysliuvalna tekhnika», № 2 (25), c. 126–131, 2017.
T. D. Polhul, A. A. Yarovyi «Vyznachennia shakhraiskykh operatsii pry vstanovlenni mobilnykh dodatkiv z vykorystanniam intelektualnoho analizu danykh», na Suchasni tendentsii rozvytku systemnoho prohramuvannia. Tezy dopovidei, Kyiv, 2016, s. 55–56.
T. D. Polhul, A. A. Yarovyi «Metod podolannia riznoridnosti danykh dlia vyiavlennia shakhraistva pry instaliuvanni mobilnykh dodatkiv», Visnyk SNU im. V. Dalia – Sievierodonetsk: SNU im. V. Dalia. 2018, № 7 ( 248 ), c.60-69, 2018.
T. Polhul, “Development of an intelligent system for detecting mobile app install fraud”, in Proceedings of the IRES 156th International Conference, Bangkok, Thailand, 21st-22nd March 2019, pp. 25-29.
FraudScore: FraudScore fights ad fraud using Machine Learning [Online]. Available: https://fraudscore.mobi/
T. Polhul, A. Yarovyi “Development of a method for fraud detection in heterogeneous data during installation of mobile applications”, Eastern-European Journal of Enterprise Technologies, № 1/2 (97), 2019. doi: 10.15587/1729-4061.2019.155060
V. Chandola, A. Banerjee, V. Kumar, “Anomaly Detection: A Survey”, ACM Computing Surveys (CSUR), Volume 41, Issue 3, Article No. 15, New York, NY, USA, July 2009.
I. S. Ivaskiv “Machine-learning methods in tasks of detection the atypical behavior of complex system”, Master Thesis. Ternopil National Economy University, Ternopil, 2017. (Ukr.).
D. Hawkins, Identification of Outliers. Chapman and Hall, 1980.
V. Barnett, T. Lewis, Outliers in Statistical Data, Wiley, 1994.
A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, OReilly Media, 2017, 574 p.
A. H. Kiulian, T. D. Polhul, M. B. Khazin, «Matematychna model rekomendatsiinoho servisu na osnovi metodu kolaboratyvnoi filtratsii», Kompiuterni tekhnolohii ta Internet v informatsiinomu suspilstvi, s. 226–227, 2012.
A. A. Yarovyi, T. D. Polhul, Kompiuterna prohrama «Prohramnyi modul zboru danykh informatsiinoi tekhnolohii» vyiavlennia shakhraistva pry instaliuvanni prohramnykh dodatkiv. Cvidotstvo pro reiestratsiiu avtorskoho prava na tvir № 76348. K.: Ministerstvo ekonomichnoho rozvytku i torhivli Ukrainy, 2018.
A. A. Yarovyi, T. D. Polhul, Kompiuterna prohrama «Prohramnyi modul vyznachennia skhozhosti korystuvachiv informatsiinoi tekhnolohii vyiavlennia shakhraistva pry instaliuvanni prohramnykh dodatkiv». Cvidotstvo pro reiestratsiiu avtorskoho prava na tvir № 76347. K.: Ministerstvo ekonomichnoho rozvytku i torhivli Ukrainy, 2018.
Downloads
-
PDF (Українська)
Downloads: 532