PREDICTION OF CORONAVIRUS WAVES BASED ON THE METHOD OF WEIGHT RECOVERY OF THE COGNITIVE MAP TO TAKE INTO ACCOUNT FOR INTERREGIONAL INFLUENCE
DOI:
https://doi.org/10.31649/1999-9941-2021-52-3-86-94Keywords:
cognitive modeling, cognitive map, coronavirus, wave of new confirmed patients, graph theoryAbstract
This article considers the urgent task of predicting the start, peak and end waves of daily increases in the number of confirmed coronavirus patients in a given region based on a cognitive map that takes into account interregional influence, ie other regions on a given, and vice versa. A method for identifying the weights of such a cognitive map for neighboring regions is proposed. A step-by-step algorithm for applying this method in practice based on real data on coronavirus patients in these regions has been developed, a number of techniques for its implementation have been presented, and its automation in Python has been carried out. An example is given to test the efficiency of the proposed method and algorithm on the example of interaction analysis and prediction of the end date of the coronavirus wave in Ukraine according to Romania based on the restored weights of the second order cognitive map.
References
V. B. Mokin, A. V. Losenko, i A. R. Yashcholt, «Informatsiina tekhnolohiia analizu ta prohnozuvannia kilkosti novykh vypadkiv zakhvoriuvan na koronavirus SARS-COV-2 v Ukraini na osnovi modeli Prophet,» Visnyk Vinnytskoho politekhnichnoho instytutu, vyp. 5, s. 71–83. 2020. https://doi.org/10.31649/1997-9266-2020-152-5-71-83 [in Ukrainian].
V. B. Mokin, A. V. Losenko, i A. R. Yashcholt, «Informatsiina tekhnolohiia analizu ta prohnozuvannia bahatokhvylovoi kilkosti novykh vypadkiv zakhvoriuvan na koronavirus COVID-19 na osnovi modeli Prophet,» Visnyk Vinnytskoho politekhnichnoho instytutu, vyp. 6, s. 65–75. 2020. https://doi.org/10.31649/1997-9266-2020-153-6-65-75 [in Ukrainian].
I. Brovchenko, «Rozrobka matematychnoi modeli poshyrennia epidemii COVID-19 v Ukraini,» Svitohliad, №2 (82), s. 2-14. 2020 [in Ukrainian].
C.L. Althaus, Real-time modeling and projections of the COVID-19 epidemic in Switzerland, Institute of Social and Preventive Medicine, University of Bern, Switzerland, 20 April 2020. [Online]. Available: https: ispmbern.github.io/covid-19/swiss-epidemic-model.
M.H.D.M. Ribeiro, R.G. da Silva, J.H.K. Larcher, V.C. Mariani, L..S. Coelho, “Ensemble Learning Models Coupled with Urban Mobility Information Applied to Predict COVID-19 Incidence Cases,” Modeling, Control and Drug Development for COVID-19 Outbreak Prevention. Studies in Systems, Decision and Control, vol 366, pp. 821-858. 2021. https://doi.org/10.1007/978-3-030-72834-2_24.
M. R. Farzanegan, H. F. Gholipour, M. Feizi, R Nunkoo., and A. E. Andargoli, “International tourism and outbreak of coronavirus (COVID-19): A cross-country analysis,” Journal of Travel Research, vol. 60, №3, p. 687-692, 2021. https://doi.org/10.1177/0047287520931593
P. Ssentongo et al., “Pan-African evolution of within-and between-country COVID-19 dynamics,” Proceedings of the National Academy of Sciences, vol. 118, №28. 2021. https://doi.org/10.1073/pnas.2026664118.
O. A. Adegboye et al., “Change in outbreak epicentre and its impact on the importation risks of COVID-19 progression: A modelling study,” Travel Medicine and Infectious Disease, vol. 40, 101988, 2021. https://doi.org/10.1016/j.tmaid.2021.101988.
V. B. Mokin, i A. V. Losenko, «Kartuvannia trendu tyzhnevykh prohnoziv za modelliu Facebook Prophet zminy kilkosti novykh khvorykh na koronavirus u krainakh Yevropy protiahom sichnia-bereznia 2021 roku,» L naukovo-tekhnichna konferentsiia pidrozdiliv VNTU, Vinnytsia, 10-12 bereznia, 2021 r. [Elektronnyi resurs]. Rezhym dostupu: https://conferences.vntu.edu.ua/index.php/all-fksa/all-fksa-2021/paper/view/12849 [in Ukrainian].
V. B. Mokin, O. V. Burdeina, K. O. Koval, i A. R. Yashcholt, «Metod proektuvannia kohnityvnoi kar-ty dlia optymizatsii proforiientatsiinoi diialnosti ZVO,» Visnyk Vinnytskoho politekhnichnoho in-stytutu, №3, s. 89–99, Cherv. 2018 [in Ukrainian].
V. D. Romanenko, i Ju. L. Miljavskij, «Sintez sledjashhej sistemy upravlenija neustojchivymi impul'-snymi processami v ierarhicheskih kognitivnyh kartah slozhnyh sistem,» Teoretichnі ta prikladnі problemi і metodi sistemnogo analіzu, №4, s.7-13. 2016. http://doi.org/10.20535/SRIT.2308-8893.2016.4.01 [in Russian].
V. D. Romanenko, i Ju. L. Miljavskij, «Obespechenie ustojchivosti impul'snyh processov v kog-nitivnyh kartah na osnove modelej v prostranstve sostojanij,» Teoretichnі ta prikladnі pro-blemi і metodi sistemnogo analіzu, №1, s. 26-42. 2014 [in Russian].
O. Wahltinez et al., COVID-19 Open-Data: curating a fine-grained, global-scale data repository for SARS-CoV-2. [Online]. Available: https://goo.gle/covid-19-open-data.
Ensheng Dong, Hongru Du, and Lauren Gardner, “An interactive web-based dashboard to track COVID-19 in real time,” The Lancet Infectious Diseases, vol. 20, №5, p. 533–534. 2020. https://doi.org/10.1016/S1473-3099(20)30120-1.
Downloads
-
PDF (Українська)
Downloads: 117