ONTOLOGY AS A SOFTWARE ADDITION TO THE SYSTEM FOR MATHEMATICAL MODELING ON THE BASIS OF INTERVAL DATA
DOI:
https://doi.org/10.31649/1999-9941-2022-54-2-26-38Keywords:
ontology, usage scheme, mathematical modeling, methods of interval data analysis, software architecture, software and toolsAbstract
The article considers an important scientific problem of developing methods and means of constructing discrete models of complex objects in the form of interval difference equations based on a combination of ontological approach and analysis of interval data to expand the scope and conditions of application of models. impetus for the development of applied research in the fields of national defense, environmental protection, medicine and other areas, where the necessary component of the decision support system are mathematical models of objects with distributed parameters. The essence of the approach to mathematical modeling based on interval analysis is characterized, the main feature of which is the multiple estimation of the parameters of the input-output model, built on the results of experiments in which the output variables are obtained in interval form. The main research results presented in the article are: description of the approach to the use of mathematical modeling ontology based on interval data for software development and use, in order to expand the scope and conditions of application of models while ensuring its given prognostic properties; a step-by-step scheme of the process of developing an onto-controlled software system of mathematical modeling based on interval analysis is proposed; the scheme of the process of realization, use and updating of the considered ontological model of the subject area of mathematical modeling on the basis of interval data is offered. The peculiarity of the approaches proposed in this article is that they can be implemented as a software add-on to applied systems of mathematical modeling based on interval analysis. The combination of approaches based on interval analysis and ontological representation of the subject area provides increased efficiency of computational procedures for identifying models of complex objects, as well as the adaptive use of different models for different subject areas in decision support systems.
References
M. P. Dyvak, N. P. Porplytsia, T. M. Dyvak, Identyfikatsiia dyskretnykh modelei system z rozpodilenymy parametramy na osnovi analizu intervalnykh danykh: monohrafiia. Ternopil, Ukraina: Ekonomichna dumka TNEU, 2018, 220 s. [in Ukrainian].
M. P. Dyvak, Zadachi matematychnoho modeliuvannia statychnykh system z intervalnymy danymy: monohrafiia. Ternopil, Ukraina: Ekonomichna dumka TNEU, 2011, 215 s. [in Ukrainian].
M. P. Dyvak, A. V. Pukas, N. P. Parplytsia, A. M. Melnyk, Prykladni zadachi strukturnoi ta pa-rametrychnoi identyfikatsii intervalnykh modelei skladnykh obiektiv: monohrafiia. Ternopil. Ukraina: Universytetska dumka, 2021, 212 s. [in Ukrainian].
H. Madala, A. Ivakhnenko, “Inductive Learning Algorithms for Complex Systems Modelling,” Boca Raton: CRC Press. 1994.
A. Ivakhnenko, G. Ivakhnenko, “The Review of Problems Solvable by Algorithms of the Group Method of Data Handling (GMDH),” Pattern Recognition and Image Analysis, 5 (4), pp. 527–535. 1995.
A. Ivakhnenko, V. Lapa, “Cybernetics and Forecasting Techniques,” Modern Analytic and Computa-tional Methods in Science and Mathematics, v.8 ed. American Elsevier. 1967.
SW. Tu, H. Eriksson, JH. Gennari, Y. Shahar, MA. Musen, “Ontology-based configuration of prob-lem-solving methods and generation of knowledge-acquisition tools: application of PROTEGE-II to protocol-based decision support,” Artif Intell Med., 7(3), pp. 257-89. 1995. doi: 10.1016/0933-3657(95)00006-r. PMID: 7581625.
A. Sattar, E. Salwana, M. Surin, M. Ahmad, M. Ahmad, A. Mahmood, “Comparative Analysis of Methodologies for Domain Ontology Development: A Systematic Review,” International Journal of Advanced Computer Science and Applications (IJACSA), 11(5). 2020. doi: 10.14569/IJACSA.2020.0110515.
M. Musen, “The protégé project. AI Matters,” 1, pp. 4-12. 2015. doi: 10.1145/2757001.2757003.
U. Itziar, M. Nieto, M. García, O. Otaegui, “Design and Implementation of an Ontology for Semantic Labeling and Testing: Automotive Global Ontology (AGO),” Applied Sciences, 11, no. 17: 7782. 2021. doi: 10.3390/app11177782.
M. Dyvak, O. Papa, A. Melnyk, A. Pukas, N. Porplytsya, A. Rot, “Interval Model of the Efficiency of the Functioning of Information Web Resources for Services on Ecological Expertise,” Mathematics, 8, 2116. 2020. doi: 10.3390/math8122116
О. Аndroshchuk, R. Berezenskyi, О. Lemeshko, A. Melnyk, O. Huhul, “Model of Explicit Knowledge Management in Organizational and Technical Systems,” International Journal of Computing, 20(2), рр. 28-36. 2021.
A. Melnyk, R. Pasichnyk, “System of semantic classes for test's generation,” in 2010 International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), 2010, pp. 206-206.
R. Pigazzi, C. Confalonieri, M. Rossoni, E. Gariboldi, G. Colombo, “Ontologies As a Tool for Design and Material Engineers,” in Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition. Vol. 6: Design, Systems, and Complexity. Virtual, Online. https://doi.org/10.1115/IMECE2020-24042, 2020.
A. Kovbasistyi, A. Melnyk, M. Dyvak, V. Brych and I. Spivak, “Method for detection of non-relevant and wrong information based on content analysis of web resources,” 2017 XIIIth International Con-ference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), 2017, pp. 154-156, doi: 10.1109/MEMSTECH.2017.7937555.
M. Dyvak, A. Melnyk and Y. Kedrin, “Interval model of the user reactions to messages in thematic groups of social networks,” 2022 IEEE 16th International Conference on Advanced Trends in Radio-electronics, Telecommunications and Computer Engineering (TCSET), 2022, pp. 837-840, doi: 10.1109/TCSET55632.2022.9766857.
M. Dyvak, A. Pukas, A. Melnyk, I. Voytyuk, S. Valchyshyn and I. Romanets, “Software Architecture for Modeling the Interval Static and Dynamic Objects,” 2021 11th International Conference on Ad-vanced Computer Information Technologies (ACIT), 2021, pp. 572-575, doi: 10.1109/ACIT52158.2021.9548577.
S. Mazepa, S. Banakh, A. Melnyk, S. Pugach, O. Yavorska and N. Golota, “An Ontological Approach to Detecting Fake News in Online Media,” 2021 11th International Conference on Advanced Com-puter Information Technologies (ACIT), 2021, pp. 531-535, doi: 10.1109/ACIT52158.2021.9548394.
M. P. Dyvak, A. M. Melnyk, O. A. Papa, “Matematychne ta prohramne zabezpechennia intelektu-alnoho modulia prykladnykh prohramnykh system dlia nadannia administratyvnykh posluh shcho-do provedennia ekolohichnoi ekspertyzy,” Informatsiini tekhnolohii ta kompiuterna inzheneriia, 49(3), s. 66–76. 2020 [in Ukrainian].
M. P. Dyvak, A. M. Melnyk, A. V. Kovbasistyi, O. A. Papa, “Pidkhid do matematychnoho modeliu-vannia efektyvnosti web-resursiv,” Optyko-elektronni informatsiino-enerhetychni tekhnolohii, 38, 2 (Ber 2020), s. 29–37. 2020 [in Ukrainian].
Downloads
-
PDF (Українська)
Downloads: 130