TYPE-2 FUZZY SETS IN THE TASKS OF MODELLING AND ESTIMATING OF CRITICAL SYSTEMS’S STATES WITH UNCERTAIN INPUT DATA AND THE USAGE OF EXPERTS

Authors

  • Yurii Baryshev Vinnytsia National Technical University, Vinnytsia
  • Nataliia Kondratenko Vinnytsia National Technical University, Vinnytsia
  • Vitalii Kazmirevskyi Vinnytsia National Technical University, Vinnytsia
  • Tatiana Kyrylashchuk Vinnytsia National Technical University, Vinnytsia

DOI:

https://doi.org/10.31649/1999-9941-2023-57-2-13-24

Keywords:

type-1 and type-2 fuzzy sets, interval fuzzy model, expert knowledge, belonging function, uncertain input data

Abstract

Abstract. A method of type-2 fuzzy sets implementation for critical systems’ modeling and state assessment tasks with uncertain input data is proposed. It is shown that the basis for solving the modeling task is designing of a fuzzy logic system with interval membership functions of type-2. The paper presents the task of further developing the process of estimating the interval output of a fuzzy system with experts involvement. An approach based on fuzzy sets is proposed for solving the task of critical systems’ modeling and states assessment. Using the example of energy grid systems, where a high degree of uncertainty is present, it is shown that the main factors that influence the appearance of uncertainty in the initial data set of such systems are caused by the lack of sufficient information in the open print and the high variability of threats under the influence of the growing pace of digitalization of business processes. An analysis of expert evaluations of the interval output of fuzzy systems based on examples of modeling complex objects in various fields of application is given. The first example demonstrates the results of modeling in the field of natural sciences with uncertain initial data for assessing the prospects of an artesian well, where the final assessment is made by an expert. The second example demonstrates the implementation of the interval fuzzy model in the task of social orientation, where the problem of recruiting personnel in social groups from the point of view of professional suitability is modeled. The third task refers to modeling in the field of medical diagnosis of diseases of the endocrine system. Evaluation by experts of the results of interval fuzzy modeling in this field makes it possible to determine the state of a person's disease for endocrine pathology and prescribe timely treatment. The given examples of evaluating the interval output of a fuzzy system, taking into account the opinion of experts, confirm the possibilities for making decisions that are adequate for the subject area in the conditions of uncertain input data. Prospects for the application of the proposed models for the problems of cyber security of critical systems are given.

Author Biographies

Yurii Baryshev , Vinnytsia National Technical University, Vinnytsia

PhD (Eng), Associate Professor of Information Protection Department, Vinnytsia National Technical University, Vinnytsia

Nataliia Kondratenko , Vinnytsia National Technical University, Vinnytsia

PhD (Eng), Professor of Information Protection Department, Vinnytsia National Technical University, Vinnytsia

Vitalii Kazmirevskyi , Vinnytsia National Technical University, Vinnytsia

Postgraduate student for Information Technologies and Computer Engineering, Vinnytsia National Technical University, Vinnytsia

Tatiana Kyrylashchuk , Vinnytsia National Technical University, Vinnytsia

assistant for Information Technologies and Computer Engineering, Vinnytsia National Technical University, Vinnytsia

References

Zadeh L.A. Fuzzy sets / Zadeh L.A. // Inform. And Control. – 1965. – V8. – P. 339 - 353.

Zadeh L.A. Fuzzy sets as a basis for theory of possibility / Zadeh L.A. // Fuzzy sets and systems 100 suplements. – 1999. – P. 9 - 34.

Mendel, J. M. Uncertaіnty, fuzzy logіc, and sіgnal processіng [Text] // Sіgnal Processіng Journal. 2000. – V. 80. – P. 913–933.

Liang, Q. Interval Type-2 fuzzy logic systems: theory and design [Text] / Q. Liang, J. M. Mendel // IEEE Trans. on Fuzzy Syst. – 2000. –V. 8. – P. 535–550.

Zeng, J. Type-2 Fuzzy sets for pattern classification: A review [Text] / J. Zeng, Z. Q. Liu // Proceedings of the IEEE Symposium on Foundations of computational intelligence. – 2007. – P. 193–200.

Nataliia R. Kondratenko Applications Type-2 Membership Functions in Fuzzy Logic Systems Under Conditions of Uncertainty Input Data Proceedings of XVI International Conference Measurement and Control in Complex System (MCCS-2022) https://doi.org/10.31649/mccs2022.02

Guerrero, Maribel. Comparative Study between Type-1 and Interval Type-2 Fuzzy Systems in Parameter Adaptation for the Cuckoo Search Algorithm [Text] / Maribel Guerrero, Fevrier Valdez and Oscar Castillo // Symmetry.- 2022, 14, 2289. https://doi.org/10.3390/sym

Zhina Zhang &Yugang Niu. Adaptive sliding mode control for interval type-2 stochastic fuzzy systems subject to actuator failures [Text] / Zhina Zhang &Yugang Niu // International Journal of ystems Science. - 2018. https://doi.org/10.1080/00207721.2018.1534027

Kondratenko, N. Interval Fuzzy Modeling of Comlex Systems under Conditions of Input Data Uncertainly [Text] / N. Kondratenko, О. Snihur // Eastern-European Journal of Enterprise Technologies. – 2016. – V. 4/4 (82). – P. 20–28.

Kondratenko, N. Interval type-2 generalizing fuzzy model for monitoring the states of cmplex systems using experts knowledge [ Text] / N. Kondratenko, О. Snihur, R. Kondratenko // System Research And Information Technologies. – 2023. – No. 2. DOI: https://doi.org/10.20535/SRIT.2308-8893.2023.2.05

Kondratenko N.R. Vykorystannya nechitkykh baz znanj z funktsiyamy nalezhnosti typu-2 u medychniy diahnostytsi / N.R. Kondratenko // Materialy mizhnar. nauk.-prakt. konf., «Аktual’ni zadachi medychnoyi biolohichnoyi fizyky ta informatyky»: - 2022р.:.- Vinnytsya, rezhym dostupu: https://drive.google.com/file/d/1icajVT7OKyVxlfXZd1czwhS13EHtmUj8/view?usp=sharing

Kondratenko, N. R. Fuzzy Logic Systems with Allovance for the Blank in Experimental Data Taken [Text] / N. R. Kondratenko, N. B. Zelinsjka, S.M. Kuzemko // Naukovi visti NTUU KPI.- 2004.- No. 5. P. 37–41.

Kondratenko, N. R. Study of Aggregating Interval Type-2 Fuzzy Models Capabilities for Forecasting of Time Series [Теxt] / N.R. Kondratenko, O. V. Cheboraka, S.M.Kuzemko // Visnyk VPI. - 2010. – No. 4. – P. 22–27.

Kondratenko, N.R. Fuzzy models in staff recruitment problems during the social groups forming [Теxt] / N.R.Kondratenko, S.V. Luzhetskiy, О.V. Cheboraka // System Research And Information Technologies. – 2011. – No 3. – P. 56–62.

Kondratenko, N. R. Improving Adequacy of Type-2 Fuzzy Models by Using Type-2 Fuzzy Sets [Text] / N. Kondratenko // Naukovi visti NTUU KPI. – 2014. – No. 6. – P. 56–61.

I. Kotsiuba, I. Skarga-Bandurova, A. Giannakoulias, M. Chaikin and A. Jevremovic. Technique for Finding and Investigating the Strongest Combinations of Cyberattacks on Smart Grid Infrastructure, 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 2019, pp. 4265-4272, doi: 10.1109/BigData47090.2019.9006335.

T. Plėta, M. Tvaronavičienė, S. Della Casa, K. Agafonov. Cyber-attacks to critical energy infrastructure and management issues: overview of selected cases. Insights into Regional Development, 2020, 2 (3), pp. 703 - 715. URL: https://hal.science/hal-03271856/ (accessed: 08.09.2023).

Kondratenko, N.R. Fuzzy Logic Systems with the use of general type fuzzy sets [Text] / N.R. Kondratenko, S.M. Kuzemko // Naukovi visti NTUU KPI, - 2004.- No.1.- P.16-21.

Kondratenko, N. R. Investigating adequacy of interval type-2 fuzzy models in comlex objects identification problems [Text] / N. R. Kondratenko, O. O. Snihur // System Research And Information Technologies. – 2019. – NO 4. – P. 94–104.

Ilin, M., Yakobchuk, D. Reverse Engineering and Malware Analyses: Laboratory works’ manual for students of 125 «Cybersecurity», 113 «Applied Mathematics» curricula. Kyiv, NTUU «Igor Sikorsky Kyiv Polytechnic Institute», 2020. 117 p.

T. D. Oyetoyan, B. Milosheska, M. Grini, D. S. Cruze. Myths and Facts About Static Application Security Testing Tools: An Action Research at Telenor Digital. Agile Processes in Software Engineering and Extreme Programming 19th International Conference, XP 2018 Porto, Portugal, May 21–25, 2018 Proceedings. pp. 86-103 URL: https://library.oapen.org/bitstream/handle/20.500.12657/27860/1002144.pdf?sequence=1#page=98 (accessed: 08.09.2023).

Downloads

Abstract views: 181

Published

2023-09-20

How to Cite

[1]
Y. . Baryshev, N. . Kondratenko, V. . Kazmirevskyi, and T. . Kyrylashchuk, “TYPE-2 FUZZY SETS IN THE TASKS OF MODELLING AND ESTIMATING OF CRITICAL SYSTEMS’S STATES WITH UNCERTAIN INPUT DATA AND THE USAGE OF EXPERTS ”, ІТКІ, vol. 57, no. 2, pp. 13–24, Sep. 2023.

Issue

Section

Information technology and coding theory

Metrics

Downloads

Download data is not yet available.