МЕТОД ВИЯВЛЕННЯ НЕАКТУАЛЬНОЇ ІНФОРМАЦІЇ В СЕРВІСНО-ОРІЄНТОВАНИХ КОРПОРАТИВНИХ СИСТЕМАХ НА ПРИКЛАДІ СИСТЕМ ОЦІНЮВАННЯ ЯКОСТІ ГРУНТІВ
DOI:
https://doi.org/10.31649/1999-9941-2021-50-1-45-54Ключові слова:
веб-сервіси, API інтерфейси, неактуальна інформація, сервісно-орієнтована архітектураАнотація
У статті розглянуто важливу науково-прикладну задачу розробки методу виявлення неактуальної інформації, яка є актуальним напрямком розвитку та реалізації веб-орієнтованих інформаційних систем. Проведено аналіз сучасних методів та засобів оцінки неактуальної та недостовірної інформації в сервісно-орієнтованих корпоративних системах та виділено основні проблемні напрямки, які виникають в процесі їх функціювання. Розроблено метод фільтрування даних на основі метрики для оцінки актуальності інформації. Наведено приклад застосування метрики для оцінювання результатів використання різних сервісів аналізу якості грунтів та грунтових вод. Основними результатами досліджень, наведеними в статті є: метрика оцінки актуальності інформації, яка отримана з використанням сервісів в корпоративних інформаційних системах; метод фільтрування даних на основі метрики оцінки актуальності інформації в рамках досліджуваної предметної області. Особливістю розробленого методу є те, що він може бути реалізований як програмна надбудова до сервісно-орієнтованих інформаційних систем. Використання запропонованих інтелектуальних методів обробки даних, які отримують з використанням сервісів, доволить підвищити ефективність аналізу неактуальної інформації та скоротить час визначення нерелевантних джерел її надання.
Посилання
Zhou, Xinyi & Zafarani, Reza, «A Survey of Fake News: Fundamental Theories, Detection Methods, and Opportunities», 2 Dec 2018.
Ahmad, Iftikhar & Yousaf, Muhammad & Yousaf, Suhail & Ahmad, Muhammad Ovais, «Fake News Detection Using Machine Learning Ensemble Methods», Complexity in Deep Neural Networks, 2020.
S. A. García, G. G. García, M. S. Prieto, A. J. M. Guerrero, and C. R. Jiménez, «The impact of term fake news on the scientific community scientific performance and mapping in web of science», So-cial Sciences, vol. 9, no. 5, 2020.
S. Akhtar, F. Hussain, F. R. Raja et al., «Improving mispronunciation detection of arabic words for non-native learners using deep convolutional neural network features», Electronics, vol. 9, no. 6, 2020.
Ahmed, S., Hinkelmann, K., Corradini, F., «Combining machine learning with knowledge engineering to detect fake news in social networks − a survey», In: Proceedings of the AAAI 2019 Spring Sympo-sium, vol. 12 (2019).
B. Marr, Coronavirus fake news: how Facebook, Twitter, and Instagram are tackling the problem. Forbes (2020). [Online]. Available: https://www.forbes.com/sites/bernardmarr/2020/03/27/finding-the-truth-about-covid-19-how-facebook-twitter-and-instagram-are-tackling-fake-news.
H. Sparks, H. Frishberg, Facebook gives step-by-step instructions on how to spot fake news (2020). [Online]. Available: https://nypost.com/2020/03/26/facebook-gives-step-by-step-instructions-on-how-to-spot-fake-news/
Zhou, X., Zafarani, R.: Fake news: a survey of research, detection methods, and opportunities (2018). arXiv preprint arXiv:1812.00315.
Ian Chadd, Emel Filiz-Ozbay, Erkut Y. Ozbay. The relevance of irrelevant information. Experimental Economics, 2020; DOI: 10.1007/s10683-020-09687-3.
N. A. D. L. Perera, C. Priyankara and D. W. R. S. Jayasekara, «Identifying Irrelevant Answers in Web Based Question Answering Systems», 2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer), Colombo, Sri Lanka, 2020, pp. 11-16, doi: 10.1109/ICTer51097.2020.9325449.
Alkhodair SA, Ding SH, Fung BC, Liu J (2020) Detecting breaking news rumors of emerging topics in social media. Inf Process Manag 57:102018.
Braşoveanu AM, Andonie R (2019) Semantic fake news detection: a machine learning perspective. In: International work-conference on artificial neural networks, Springer, pp 656–667.
A. M. Melnyk, O. Z., «Pidvyshchennia efektyvnosti poshuku dokumentiv v internet iz vrakhuvanniam podibnosti veb-storinok», Suchasni kompiuterni informatsiini tekhnolohii : materialy III Vseukr. shk.-seminaru molodykh vchen. i stud. ASIT2013 [m. Ternopil, 17-18 trav. 2013 r.], Ternopil: TNEU, 2013, s. 212.
Li Y, Nie X, Huang R (2018b) Web spam classification method based on deep belief networks. Expert Syst Appl 96:261–270.
Liu Y, Xu S (2016) Detecting rumors through modeling information propagation networks in a social media environment. IEEE Trans Comput Soc Syst 3:46–62.
Naseem U, Razzak I, Musial K, Imran M (2020) Transformer based deep intelligent contextual em-bedding for twitter sentiment analysis. Future Gener Comput Syst 6:91.
Shu K, Wang S, Lee D, Liu H (2020) Mining disinformation and fake news: concepts, methods, and recent advancements. arXiv preprint arXiv:2001.00623.
Tang D, Qin B, Liu T (2015) Document modeling with gated recurrent neural network for sentiment classification. In: Proceedings of the 2015 conference on empirical methods in natural language processing, pp 1422–1432.
Allen, Jennifer & Howland, Baird & Mobius, Marine & Rothschild, David & Watts, Duncan. (2020). Evaluating the fake news problem at the scale of the information ecosystem. Science Advances. 6. eaay3539. 10.1126/sciadv.aay3539.
M. P. Dyvak, A. M. Melnyk, O. A. Papa, «Matematychne ta prohramne zabezpechennia intelektualnoho modulia prykladnykh prohramnykh system dlia nadannia administratyvnykh posluh shchodo provedennia ekolohichnoi ekspertyzy», Informatsiini tekhnolohii ta kompiuterna inzheneriia, 49(3), s. 66–76. 2020
H. Ahmed, I. Traore, and S. Saad, «Detecting opinion spams and fake news using text classification», Security and Privacy, vol. 1, no. 1, 2018.
Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Techniques (Data-Centric Systems and Applications). Springer-Verlag New York, Inc., Secaucus (2006).
Dyvak, M., Papa, O., Melnyk, A., Pukas, A., Porplytsya, N., Rot, A. «Interval Model of the Efficiency of the Functioning of Information Web Resources for Services on Ecological Expertise», Mathematics, 8(12), 2116, 2020.
O. O. Lysenko, R. I. Kokitko, «Model analizu nestrukturovanoi informatsii dlia pobudovy bazy znan korporatyvnoi informatsiinoi systemy», Suchasni kompiuterni informatsiini tekhnolohii : materialy III Vseukr. shk.-seminaru molodykh vchen. i stud. ASIT2013 [m. Ternopil, 17-18 trav. 2013 r.], Ter-nopil: TNEU, 2013, s. 211.
Truong HL., Comerio M., Maurino A., Dustdar S., De Paoli F., Panziera L. (2010) On Identifying and Reducing Irrelevant Information in Service Composition and Execution. In: Chen L., Triantafillou P., Suel T. (eds) Web Information Systems Engineering – WISE 2010. WISE 2010. Lecture Notes in Computer Science, vol 6488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17616-6_7.
M. Susla, R. Pasichnyk, A. Melnyk, N. Pasichnyk, O. Vasylkiv and O. Androshchuk, «Formalization of Scientific Researches Results in Corporate Knowledge Bases As a Tool of Their Accumulation», 2020 10th International Conference on Advanced Computer Information Technologies (ACIT), Deg-gendorf, Germany, 2020, pp. 488-491, doi: 10.1109/ACIT49673.2020.9208863.
А. Kovbasistyi, A. Melnyk, M. Dyvak, V. Brych and I. Spivak, «Method for detection of non-relevant and wrong information based on content analysis of web resources», 2017 XIIIth International Con-ference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), Lviv, 2017, pp. 154−156, doi: 10.1109/MEMSTECH.2017.7937555.
А. Pukas, A. Simak, O. Syrnyk, L. Horal, V. Shyjko and O. Papa, «Software Module for Data Cor-rectness and Completeness Control in the Academic Staff Performance Appraisal System», 2019 9th International Conference on Advanced Computer Information Technologies (ACIT), Ceske Budejovice, Czech Republic, 2019, pp. 277-280, doi: 10.1109/ACITT.2019.8779999.
M. P. Dyvak, A. V. Kovbasistyi, A. M. Melnyk, L. Y. Turchyn, Y. O. Маrtsenyuk, «System for web re-sources content structuring and recognizing with the machine learning elements», Radioelektronika, informatyka, upravlinnia, 3 (Hrud 2018). DOI:https://doi.org/10.15588/1607-3274-2018-3-14.
A. Kovbasistyi, A. Melnyk, M. Dyvak, V. Brych et al., «Method for detection of non-relevant and wrong information based on content analysis of web resources», XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), Lviv, 2017, pp. 154–156. DOI: 1109/MEMSTECH.2017.7937555.
M. P. Dyvak, A. M. Melnyk, A. V. Kovbasistyi, O. A. Papa, «Pidkhid do matematychnoho modeliuvannia efektyvnosti web-resursiv», Optyko-elektronni informatsiino-enerhetychni tekhnolohii, 38, 2 (Ber 2020), 29–37. DOI:https://doi.org/10.31649/1681-7893-2019-38-2-29-37.
##submission.downloads##
-
PDF
Завантажень: 206