SYSTEM OF CONTINUOUS VIBROMONITORING OF THE STATE OF TECHNOLOGICAL EQUIPMENT WITH MACHINE LEARNING OF THE CLASSIFIER
DOI:
https://doi.org/10.31649/1999-9941-2020-48-2-18-26Keywords:
machine learning, wavelet analysis, vibration monitoring, auto-coherence coefficientAbstract
Vibration monitoring of technological equipment is characterized by the presence of unsteady complex vibration signals, which are characterized by the presence of time dependences of the amplitude, frequency, phase. In classical machine learning, data already obtained is usually randomly divided into training and test sets. Based on the training data set, a classifier is obtained, and with the help of a test one, the accuracy of this obtained data classifier model is checked. The developed software package solves the problem of identifying diagnostic vibration signals by selecting the time series of the test signal with minimal proximity based on wavelet coefficients. Selection in the test set is carried out in the control process at the minimum value of the coefficient of autocoherence, which is close to zero. Thus, the data classifier works continuously, enriching the mathematical model with recognition of emerging equipment defects, depending on a large number of random factors, installation conditions for the qualifications of staff, etc. A fundamentally new approach to organizing the identification of a vibration signal is that it is not the vibration monitoring signals recorded over a certain period of time that are identified, but the identification takes place in real time. This makes monitoring the state of technological equipment operational. The developed analysis algorithm makes it possible to implement a system of continuous vibration monitoring of technological equipment, to increase the accuracy of identification of diagnostic vibration signals through the use of an integrated approach to the analysis of the proximity of a test signal.
References
Н. Н. Ишин, С. А. Гаврилов, «Методология вибромониторинга расходования ресурсов редук-торов мотор-колес большегрузных самосвалов», Вестник Нац. техн. ун-та «ХПИ»: сб. науч. тр. Темат. вып.: Проблемы механического привода, т. 28, с. 64-75. 2011.
М. В. Ромкин, «Программный комплекс для адаптивной фильтрации сигналов», Современные информационные технологии, №. 19, с. 82-86, 2014.
N. Daneshjo et al., «Specification of the Application of Vibrodiagnostics in Assessing the State of the Industrial Robot», Advances in Science and Technology Research Journal, t. 13, 2019.
J. Dybała, «Vibrodiagnostics of gearboxes using NBV-based classifier: A pattern recognition approach», Mechanical Systems and Signal Processing, t. 38, №. 1, рр. 5-22, 2013.
A. A. Puchalski, «Technique for the vibration signal analysis in vehicle diagnostics», Mechanical Systems and Signal Processing, t. 56, рр. 173-180, 2015.
Ю. Г. Табаков, «Разработка программного комплекса для обработки НЧ сигналов», Молодой ученый, №20, с. 228-231, 2014.
Б. А. Чичков, «Способ вибрационного мониторинга роторных машин», Научный вестник Мос-ковского государственного технического университета гражданской авиации, т. 21, № 1, 2018.
R. Harang, G. Bonnet, L. R. Petzold, «WAVOS: a MATLAB toolkit for wavelet analysis and visualization of oscillatory systems», BMC research notes, t. 5, № 1, p. 163, 2012.
Е. В. Бурнаев, «Применение вейвлет-преобразования для анализа экономических временных рядов», в Сб. научн. трудов летней школы по экономико-математическому моделированию ЭКОМОД, т. 2006, с. 95, 2006.
П. Ф. Щапов, Р. П. Мигущенко, «Синтез двумерных диагностических параметров при ковариа-ционном анализе трехмерных вейвлет-преобразований вибросигналов», Інформаційні техноло-гії та комп’ютерна інженерія, № 3, с. 69-75, 2013.
O. Oliynyk, Y. Taranenko, D. Losikhin, A. Shvachka, «Investigation of the Kalman filter in the noise field with an excellent Gaussian distribution», Eastern-European journal of enterprise technologies, vol.4/4, № 94, pp. 36–42, 2018.
Y. K. Taranenko, O. Y. Oliynyk, «Multifunctional vibration frequency transducer with cylindrical resonator», Measurement Techniques, vol. 61, № 7, рр. 41–46, 2018.
NumPy Array manipulation: ndarray.flatten() function. [Online]. Available: https://www.w3resource.com/numpy/manipulation/ndarray-flatten.php. Accessed on: January 22, 2020.
Scipy.spatial.distance.correlation. [Online]. Available: https://docs.scipy.org/doc/scipy0.14.0 /reference/generated/scipy.spatial .distance.correlation.html. Accessed on: January 22, 2020.
Scipy.spatial.distance.cosine. [Online]. Available: https://docs.scipy.org/doc/scipy/reference/ generaed/scipy.spatial. distance.cosine.html. Accessed on: January 22, 2020.
Екструдер двошнековий. Технічний паспорт. ПАКС01.00.000 ПС. Харків, Україна: ТОВ «Нау-ково-виробничий підприємство «ПАКС», 2015, 53 с.
Засоби вібродіагностики. BALTECH 2017. [Електронний ресурс]. Режим доступу: http://vibropoint.ru/sredstva-vibrodiagnostiki. Дата звернення: 04.30.2018.
Downloads
-
PDF (Українська)
Downloads: 236