CONSTRUCTION AND ANALYSIS OF COMPUTER MODELS OF RESONATORS OF CAPACITIES OF TECHNOLOGICAL DEVICES BY VISUAL MEANS OF PYTHON
DOI:
https://doi.org/10.31649/1999-9941-2021-50-1-105-114Keywords:
resonator, oscillations, amplitude, frequency, capacitanceAbstract
Annotation. The study of nonlinear oscillations and processes in apparatuses that occur under the influence of complex oscillations presents significant mathematical difficulties. The arising strong nonlinear oscillations can significantly intensify technological processes or cause the destruction of structural elements. Therefore, the problem of using the vibrational energy arising in technological devices naturally matured for a long time both for equipment designers and production technologists.
A computer model based on a differential equation for determining the frequencies and forms of bending vibrations of a tubular resonator is proposed. The use of the model makes it possible to visualize the modes and frequency of oscillations for a resonator in the form of a cylindrical part of a technological apparatus of any size. This takes into account the thickness of the walls, the outer and inner diameter of the vessel of the apparatus, and its length. The model takes into account the type of tank fastening with variation in the support stiffness.
A distinctive feature of the resulting model is that for the first time an approach was used to solve the differential equation of capacity not by obtaining a numerical solution, but an approach was used that includes obtaining an analytical expression for each waveform with subsequent visualization using Python.
References
T. Ikeda, T. Hirayama, N. Nakagawa, «Nonlinear Vibrations of a Structure Caused by Water Sloshing in a Cylindrical Tank (Special Issue on Nonlinear Dynamics)», JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, vol. 41, no. 3, рр. 639−651, 1998.
T. Ikeda, S. Murakami, «Nonlinear vibrations of elastic structures containing a cylindrical liquid tank under vertical excitation», Journal of System Design and Dynamics, vol. 2, no. 3, рр. 822-836, 2008.
А. Maekawa, M. Suzuki, K. Fujita, «Nonlinear Vibration Response of a Cylindrical Water Storage Tank Caused by Coupling Effect Between Beam-Type Vibration and Oval-Type Vibration: Part 1 − Vibration Experiment», in ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference, American Society of Mechanical Engineers Digital Collection, рр. 329−338, 2006.
D. N. Samoylenko, «Obzor apparatov i tekhnologicheskikh metodov dlya intensifikatsii massoperenosa antotsianov pri proizvodstve krasnykh sukhikh vin», Nauchnyy zhurnal NIUITMO. Seriya: Protsessy i apparaty pishchevykh proizvodstv, № 1, s. 191−199, 2011.
V. N. Khmelev, D. YU. Matytsin, R. V. Barsukov, «Optimizatsiya energoobespecheniya ul'trazvukovykh tekhnologicheskikh apparatov», Tekhnologicheskaya sistemotekhnika-2003: materialy Vtoroy mezhdunarodnoy elektronnoy nauchno-tekhnicheskoy konferentsii, Tul'skiy gosudarstvennyy universitet, 2003.
P. P. Ivanov, M. A. Khalturin, «Ispol'zovaniye apparata s vibratsionnoy nasadkoy nepreryvnogo deystviya dlya polucheniya ekstrakta iz zamorozhennykh plodov ryabiny krasnoy», Pishchevay promyshlennost', № 5, s. 38−41, 2015.
O. YU. Olíynik, «Víbrochastoniy metod kontrolyu gustini v umovakh víbratsíí̈», Metrologíya ta priladi kontrolyu yakostí, № 2 (43), s. 41−46, 2020.
А. Prokofiev, G. Makariyants, E. Shakhmatov, «Modeling of pipeline vibration under the pressure ripples in the working fluid», 17th International Congress on Sound and Vibration, ICSV, pp. 1142−1149, 2010.
O. YU. Oleynik, YU. K. Taranenko, «Matematicheskaya model' vibratsionnogo sensora dinamicheskoy vyazkosti», Ukraí̈ns'kiy metrologíchniy zhurnal, № 4, s. 34–39, 2017.
Ye. Ishemguzhin, «Dempfirovaniye parametricheskikh kolebaniy truboprovoda», Setevoye izdaniye «Neftegazovoye delo», № 3, s. 84−93, 2011.
D. F. Balyakov, «Modeli dempfirovaniya mekhanicheskikh kolebaniy», Reshetnevskiye chteniya, t. 2, № 20, 2016.
Y. K. Taranenko, O.Y. Oliynyk, «Multifunctional vibration frequency transducer with cylindrical resonator», Measurement Techniques, vol. 61, no. 7, pp. 41–46, 2018.
А. B. Prokof'yev, «Raschet sobstvennykh chastot i form kolebaniy truboprovodov s pomoshch'yu programmnogo kompleksa», Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, t. 1, № 2, 1999.
V. A. Rukavishnikov, O. P. Tkachenko, «Chislennoye i asimptoticheskoye resheniye uravneniy rasprostraneniya gidrouprugikh kolebaniy v izognutom truboprovode», Prikladnaya mekhanika i tekhnicheskaya fizika, t. 41, № 6, s. 161−169, 2000.
O. Oliynyk, Yu. Taranenko, A. Shvachka, O. Chorna, «Development of auto-oscillating system of vibration frequency sensors with mechanical resonator», Eastern-European journal of enterprise technologies, vol. 85, pp. 56−60, 2017.
V. L. Biderman, Teoriya mekhanicheskikh kolebaniy. Moskva, Rossija: Vysshaya shkola, 1980.
M. Babakov, Teoriya kolebaniy. Moskva, Rossija: Nauka, 1968.
YU. P. Zhukov, Vibratsionnyye plotnomery. Rossija: Energoatomizdat, 1991.
Downloads
-
PDF (Українська)
Downloads: 129