EXPERT BIOINFORMATION SYSTEM FOR DIAGNOSING FORMS OF ACUTE LEUKEMIA BASED ON ANALYSIS OF BIOMEDICAL INFORMATION
DOI:
https://doi.org/10.31649/1999-9941-2023-58-3-84-93Keywords:
acute leukemia, diagnosis and therapy, biomedical image, images of blast and non-blast blood cellsAbstract
Abstract. The introductory chapter established the context for this paper by stressing the significance of leukemia in healthcare and the challenges associated with both diagnosis and therapy. The paper ultimate objective is to provide an information technology solution to these issues, thereby improving patient care and prognosis. A conceptual model of an expert system for the diagnosis of acute leukemia is proposed, which will reduce the ambiguity in the interpretation of research objects. Factors influencing the correct recognition of complex objects (images of blast and non-blast blood cells) using an expert system based on computer microscopy methods are considered.
References
Abdeldaim, A. M., Sahlol, A. T., Elhoseny, M., & Hassanien, A. E. (2018). Computer-aided acute lymphoblastic leukemia diagnosis system based on image analysis. Advances in Soft Computing and Machine Learning in Image Processing, 131-147.
Ahmed, I. A., Senan, E. M., Shatnawi, H. S. A., Alkhraisha, Z. M., & Al-Azzam, M. M. A. (2023). Hybrid techniques for the diagnosis of acute lymphoblastic leukemia based on fusion of CNN features. Diagnostics, 13(6), 1026.
Ansari, S., Navin, A. H., Sangar, A. B., Gharamaleki, J. V., & Danishvar, S. (2023). A customized efficient deep learning model for the diagnosis of acute leukemia cells based on lymphocyte and monocyte images. Electronics, 12(2), 322.
Arber, D. A., Borowitz, M. J., Cessna, M., Etzell, J., Foucar, K., Hasserjian, R. P., ... & Vardiman, J. W. (2017). Initial diagnostic workup of acute leukemia: guideline from the College of American Pathologists and the American Society of Hematology. Archives of pathology & laboratory medicine, 141(10), 1342-1393.
Begum, S., Sarkar, R., Chakraborty, D., & Maulik, U. (2020). Identification of biomarker on biological and gene expression data using fuzzy preference based rough set. Journal of Intelligent Systems, 30(1), 130-141.
Grimwade, L. F., Fuller, K. A., & Erber, W. N. (2017). Applications of imaging flow cytometry in the diagnostic assessment of acute leukaemia. Methods, 112, 39-45.
Kadia, T. M., Jain, P., Ravandi, F., Garcia‐Manero, G., Andreef, M., Takahashi, K., ... & Kantarjian, H. M. (2016). TP53 mutations in newly diagnosed acute myeloid leukemia: clinicomolecular characteristics, response to therapy, and outcomes. Cancer, 122(22), 3484-3491.
Rehman, A., Abbas, N., Saba, T., Rahman, S. I. U., Mehmood, Z., & Kolivand, H. (2018). Classification of acute lymphoblastic leukemia using deep learning. Microscopy Research and Technique, 81(11), 1310-1317.
Rose-Inman, H., & Kuehl, D. (2017). Acute leukemia. Hematology/Oncology Clinics, 31(6), 1011-1028.
Shah, A., Naqvi, S. S., Naveed, K., Salem, N., Khan, M. A., & Alimgeer, K. S. (2021). Automated diagnosis of leukemia: a comprehensive review. IEEE Access, 9, 132097-132124.
Singha, A., Thakur, R. S., & Patel, T. (2021). Deep learning applications in medical image analysis. Biomedical Data Mining for Information Retrieval: Methodologies, Techniques and Applications, 293-350.
Vosberg, S., & Greif, P. A. (2019). Clonal evolution of acute myeloid leukemia from diagnosis to relapse. Genes, chromosomes and cancer, 58(12), 839-849.
Williams, P., Basu, S., Garcia‐Manero, G., Hourigan, C. S., Oetjen, K. A., Cortes, J. E., ... & Daver, N. G. (2019). The distribution of T‐cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer, 125(9), 1470-1481.
Zolfaghari, M., & Sajedi, H. (2022). A survey on automated detection and classification of acute leukemia and WBCs in microscopic blood cells. Multimedia Tools and Applications, 81(5), 6723-6753.
Timchenko, L., Wojcik, W., Kokriatskaia, N., Levchenko, O., Kryvinska, N. New methods of network modelling using parallel-hierarchical networks for processing data and reducing erroneous calculation risk. CEUR Workshop Proceedingsthis link is disabled, 2020, 2805, pp. 201–212
Timchenko, L.I. Multi-stage parallel-hierarchical network as a model of a neural-like computing scheme. Cybernetics and System Analysis, No. 2, 2000, pp. 114-134.
Metlitsky, E.A., Kaverznev, V.V. Parallel Memory Systems: Theory, Design, Application. In: Timokhin, V.I. (Ed.), Leningrad University Press, 1989, 240 pp.
Leonid Tymchenko, Natalia Kokriatska, Volodymyr Tverdomed, Natalia Sachaniuk-Kavets’ka, Liudmyla Semenova, Olha Riabokon, Konrad Gromaszek, Aisha Mussabekova "Pyramidal method of generalized spatially connected processing and an example of its implementation in image processing", Proc. SPIE 12476, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2022, 124760E (12 December 2022) https://doi.org/10.1117/12.2659202
Pavlov S. V. Information Technology in Medical Diagnostics //Waldemar Wójcik, Andrzej Smolarz, July 11, 2017 by CRC Press - 210 Pages.
Wójcik W., Pavlov S., Kalimoldayev M. Information Technology in Medical Diagnostics II. London: (2019). Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages.
Highly linear Microelectronic Sensors Signal Converters Based on Push-Pull Amplifier Circuits / edited by Waldemar Wojcik and Sergii Pavlov, Monograph, (2022) NR 181, Lublin, Comitet Inzynierii Srodowiska PAN, 283 Pages. ISBN 978-83-63714-80-2.
Pavlov Sergii, Avrunin Oleg, Hrushko Oleksandr, and etc. System of three-dimensional human face images formation for plastic and reconstructive medicine // Teaching and subjects on bio-medical engineering Approaches and experiences from the BIOART-project Peter Arras and David Luengo (Eds.), 2021, Corresponding authors, Peter Arras and David Luengo. Printed by Acco cv, Leuven (Belgium). - 22 P. ISBN: 978-94-641-4245-7.
Romanyuk O.N. Microfacet distribution function for physically based bidirectional reflectance distribution functions / O. N. Romanyuk, S. V. Pavlov, R. Yu. Dovhaliuk, N. P. Babyuk, M. D. Obidnyk, P. Kisala, B. Suleimenov // Optical Fibers and Their Applications 2012. Lublin and Naleczow, Poland, Code 96466.
Downloads
-
PDF (Українська)
Downloads: 78