CALCULATION OF THREE-DIMENSIONAL STATIONARY POTENTIAL THERMAL FIELDS BY THE FINITE ELEMENT METHOD
DOI:
https://doi.org/10.31649/1999-9941-2024-59-1-139-145Keywords:
potential thermal field, Lagrangian tetrahedron, finite element method, cubature formula, boundary conditions, Newton’s methodAbstract
Abstract. The article describes a clear algorithm for forming a system of nonlinear algebraic equations from the condition of the minimum of the functional to calculate the temperature distribution inside the three-dimensional domain filled with hysteresis-free nonlinear anisotropic environments. The boundary value problem of calculating the three-dimensional stationary potential temperature field is formulated. The finite element model for calculating the temperature distribution inside a three-dimensional domain filled with hysteresis-free nonlinear anisotropic environments is built. Basic formulas of the finite element method for the boundary value problem of calculating three-dimensional stationary potential thermal fields in domains filled with hysteresis-free nonlinear anisotropic environments with using Lagrangian tetrahedrons 1– 4 orders as finite elements and cubature formulas of numerical integration over the volume of the Lagrangian tetrahedron are derived. The algorithm determining the contribution of each finite element to the vector of residuals and matrix Jacobi nonlinear system of equations solved by Newton’s method using the elements of the tensor of the differential thermal conductivity of the environment was considered. The cubature formula of numerical integration over the volume of the Lagrangian tetrahedron based on the interpolation complete polynomial for the Lagrangian finite element of the first order was applied. This algorithm is suitable when using Lagrangian finite elements of the second, third, and fourth orders with the use of the corresponding cubature formulas for numerical integration over the volume of the Lagrangian tetrahedron. Formulas for calculating tensors of differential thermal conductivity for non-linear isotropic and linear environments are given. The boundary conditions of Dirichlet (first kind), Neumann (second kind), third and fourth kind and their consideration are described.
References
Faiz J., Mazaheri E. An overview of thermal modelling techniques for permanent magnet machines. IET Science, Measurement & Technology, 2022.
Prajwal K T, Bhat P. Thermal analysis of a Thermoelectric Generator (TEG) using FEM technique. IOP Conference Series Materials Science and Engineering, 2021.
Petresevics F., Nagy B. FEM-Based Evaluation of the Point Thermal Transmittance of Various Types of Ventilated Façade Cladding Fastening Systems. Buildings, 2022.
Jindra D., Hradil P., Kala J., Salajka V. {Non linear FEM analysis οf composite concrete slab exposed τo extreme thermal load. AIP Conference Proceedings, 2020.
Ponsati T. L., Bahman A. S., Iannuzzo F. Thermal Modeling of Large Electrolytic Capacitors Using FEM and Considering the Internal Geometry. IEEE Journal of Emerging and Selected Topics in Power Electron-ics, 2020.
Boukounacha A. Y., Zegnini B., Belkacem Y., Tahar S. The Effect of Temperature on the Thermal Conductivity of Transformer Oils Using the Finite Element Method. 1st International Conference on Materials Sciences and Applications "ICMSA2023", Khenchela, Algeria, 2023.
Silvester P. P., Ferrari R. L. Finite elements for electrical engineers. Cambridge University Press, 1996.
Gallagher R. H. Finite element analysis. Fundamentals. Pearson College Div; First Edition, 1975.
Segerlind L. J. Applied Finite Element Analysis. J. Wiley & Sons, 1984.
Silvester P., Cabayan H. S., Browne B. T. Efficient techniques for finite element analysis of electric machines. – JEEE Trans. PAS, 1973, 92, № 4, p. 1274 – 1281.
Дышовый Р.В. Расчет статического магнитного поля в неявнополюсных электрических маши-нах дифференциальным сеточным методом. Автореф. дисс. канд. техн. наук. – Львов, 1983. – 18 с.
Карашецький В.П. Кубатурні формули чисельного інтегрування за об’ємом тетраедра на основі інтерполяційних повних поліномів//Наук. вісник НЛТУ України: Зб. наук.-техн. праць. – Львів: НЛТУУ. – 2007, вип. 17.6. – С. 258-264.
Юшко С. В. Стаціонарна теплопровідність: навч. посіб./ С.В. Юшко, О. Є. Борщ, М.А. Юшко – Х.: НТУ “ХПІ”, 2011. – 80 с.
References
Faiz J., Mazaheri E. An overview of thermal modelling techniques for permanent magnet machines. IET Science, Measurement & Technology, 2022.
Prajwal K T, Bhat P. Thermal analysis of a Thermoelectric Generator (TEG) using FEM technique. IOP Con-ference Series Materials Science and Engineering, 2021.
Petresevics F., Nagy B. FEM-Based Evaluation of the Point Thermal Transmittance of Various Types of Ventilated Façade Cladding Fastening Systems. Buildings, 2022.
Jindra D., Hradil P., Kala J., Salajka V. {Non linear FEM analysis οf composite concrete slab exposed τo extreme thermal load. AIP Conference Proceedings, 2020.
Ponsati T. L., Bahman A. S., Iannuzzo F. Thermal Modeling of Large Electrolytic Capacitors Using FEM and Considering the Internal Geometry. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020.
Boukounacha A. Y., Zegnini B., Belkacem Y., Tahar S. The Effect of Temperature on the Thermal Conduc-tivity of Transformer Oils Using the Finite Element Method. 1st International Conference on Materials Sciences and Applications "ICMSA2023", Khenchela, Algeria, 2023.
Silvester P. P., Ferrari R. L. Finite elements for electrical engineers. Cambridge University Press, 1996.
Gallagher R. H. Finite element analysis. Fundamentals. Pearson College Div; First Edition, 1975.
Segerlind L. J. Applied Finite Element Analysis. J. Wiley & Sons, 1984.
Silvester P., Cabayan H. S., Browne B. T. Efficient techniques for finite element analysis of electric ma-chines. – JEEE Trans. PAS, 1973, 92, № 4, p. 1274 – 1281.
Dyshovyy R.V. Raschet statycheskoho mahnytnoho polya v neyavnopolyusnykh élektrycheskykh mashy-nakh dyfferentsyalʹnym setochnym metodom. Avtoref. dyss. kand. tekhn. nauk. – Lʹvov, 1983. – 18 s.
Karashetsʹkyy V.P. Kubaturni formuly chyselʹnoho intehruvannya za obʺyemom tetraedra na osnovi inter-polyatsiynykh povnykh polinomiv//Nauk. visnyk NLTU Ukrayiny: Zb. nauk.-tekhn. pratsʹ. – Lʹviv: NLTUU. – 2007, vyp. 17.6. – S. 258-264.
Yushko S. V. Statsionarna teploprovidnistʹ: navch. posib./ S.V. Yushko, O. YE. Borshch, M.A. Yushko – KH.: NTU “KHPI”, 2011. – 80 s
Downloads
-
PDF (Українська)
Downloads: 36