Construction Guidelines for Optical-Electronic Expert Systems in Blood Rheology
DOI:
https://doi.org/10.31649/1999-9941-2024-60-2-107-121Keywords:
biomedical information, optical – electronic expert system, membership functions, complex hierarchical structure, hemodynamic parameters, analysis of blood rheologyAbstract
Abstract. I Building specifically designed optical-electronic information processing expert systems for blood rheology bioimage analysis requires a painstaking, subtle approach. Such systems provide essential support for diagnostic operations and require an understanding of experimental properties such as the rheology of blood and bioimage analysis. To properly build these systems, guidelines are needed for improving imaging methods, image processing routines, and application of expert knowledge so the blood's rheological properties can be analyzed precisely. nformation features (information parameters) for the analysis of the biomedical images, in particular, for the assessment of the rheologic properties of the blood, are formed. Algorithm and optical-electronic expert system for the analysis of the rheological properties of the blood are suggested, they are used for the increase of the diagnostic validity which is adetermining factor in the biomedical diagnostics. The main focus of modern clinical hemorheology is the search diagnostic and prognostic criteria for various diseases and rheological correction methods violations. Changes in the rheological parameters of blood are one of the significant mechanisms of the formation of insufficient blood supply in the early stages the development of the disease. Main pathological effects violations of rheological properties in the blood can lead to micro-flow failure circulation, the extreme manifestation of which may lead to a decrease in trophism and the development of ischemic syndrome, a violation of micro-rheology and an increase in the viscosity of blood, which causes an increase in total peripheral resistance and the development of arterial hypertension syndrome, to atherosclerotic changes in blood vessels, to a violation of hemorheology, which contributes to increased thrombosis.
References
Abdeldaim, A. M., Sahlol, A. T., Elhoseny, M., & Hassanien, A. E. (2018), «Computer-aided acute lymphoblastic leukemia diagnosis system based on image analysis. Advances in Soft Computing and Machine Learning in Image Processing, 131-147.
Ahmed, I. A., Senan, E. M., Shatnawi, H. S. A., Alkhraisha, Z. M., & Al-Azzam, M. M. A. (2023). Hybrid techniques for the diagnosis of acute lymphoblastic leukemia based on fusion of CNN features. Diagnostics, 13(6), 1026.
Ansari, S., Navin, A. H., Sangar, A. B., Gharamaleki, J. V., & Danishvar, S. (2023). A customized efficient deep learning model for the diagnosis of acute leukemia cells based on lymphocyte and monocyte images. Electronics, 12(2), 322.
Arber, D. A., Borowitz, M. J., Cessna, M., Etzell, J., Foucar, K., Hasserjian, R. P., ... & Vardiman, J. W. (2017). Initial diagnostic workup of acute leukemia: guideline from the College of American Pathologists and the American Society of Hematology. Archives of pathology & laboratory medicine, 141(10), 1342-1393.
Blondal, R., Sturludottir, M.K., Hardarson, S.H., Halldorsson, & Stefansson G.H.,E. (2011). Reliability of vessel diameter measurements with a retinal oximeter. Graefes. Arch. Clin. Exp. Ophthalmol, 249(9), 1311-7.
Cree, M.J., Gamble, E., & Cornforth D. (2005). Color normalisation to reduce inter-patient and intra-patient variability in microan-eurysm detection in color retinal images. WDIC2005 ARPS workshop on digital image computing, Brisbane, Australia, 163-168.
Gilmore, E.D., Hudson, C., Preiss, D., & Fisher J. (2005). Retinal arteriolar diameter, blood velocity, and blood flow response to an isocapnichyperoxic provocation. Am. J. Physiol. Heart. Circ. Physiol, 288(6), H 2912-7.
Harris A., Sergolt R.C., Spaeth G.L. et al. (1994). Color Doppler analysis of ocular vessel blood velocity in normal tension glaucoma. Am. J. Ophthalmol, 118, 642-649.
Kozhemiako V. P., Pavlov S.V., Burdenyuk I. І., & Hamdi R.R. (2010). Optoelectronic technology analysis of biomedical image: monograph, Vinnitsya: VNTU.
Lerche D., Baumler H., Kucera W. et al. (1989). Die Fliebeigenschhaften von Blut und ihre Charakterisierung mittels hamorheologischer Methoden. Folia Haematol, 116(5), 631—652.
M. Kostruba, & Vlokh O.G.(1997). Device for measurement of micro-object linear dimension . in International Conference on “Optical Storage, Imaging and Transmission of Information”, Kiev Ukraine: SPIE the International Society for Optical Engineering, (pp. 73 – 77).
Michelson, G., Schmauss G., & Langhans M.J. (1996). Principle, validity and reliability of scanning laser Doppler flowmetry. J. Glaucoma, 5, 99-105.
Pavlov, S.V., Vassilenko, V.B., Saldan, I.R., Vovkotrub D.V., & Poplavskaya, A.A. (2016). Methods of processing biomedical image of retinal macular region of the eye, Proc. SPIE 9961, Reflection, Scattering, and Diffraction from Surfaces V, 99610X.
Posudin Y. I. (2014). Physics with Fundamentals of Biophysics; ed. by S. J. Kays. 2nd Ed. Kiev : Printline.
Pryzwan, Tomasz & Dolibog, Patrycja & Kierszniok, Klaudia & Pietrzyk, Barbara. (2024). Blood rheological properties and methods of their measurement. Annales Academiae Medicae Silesiensis, 78, 1-10.
Riva, C.E. & Feke, G.T. (1981). Principles of retinal laser Doppler velocimetry. The characteristics of the scattering electric field incident to the photodetector surface. The biomedical lasers: Technology and clinical applications. Ed. by L. Goldmann. New York, Berlin: Heidelberg, Springer-Verlag.
Riva, C.E., Harino, S., Petrig, B.L. & Shonat R.D. (1992). Laser Doppler flowmetry in the optic nerve. Exp. Eye Res, 55, 499-506.
Rotshtein A. (1998). Design and Tuning of Fussy IF – THEN Vuly for Medical Didicol Diagnosis in Fuzzy and Neuro-Fuzzy Systems in Medicine, USA. CRC-Press. pp. 235–295.
Rovira, R., Bayas, M.M., Pavlov, S.V., Kozlovskaya, T.I., Kisała, P., et al. (2015). Application of a modified evolutionary algorithm for the optimization of data acquisition to improve the accuracy of a video-polarimetric system, Proc. SPIE 9816, Optical Fibers and Their Applications, 981619 (December 18, 2015).
Saldan Y. R., Pavlov S. V., Vovkotrub D.V., & Wójcik W. et al. (2017). Efficiency of optical-electronic systems: methods application for the analysis of structural changes in the process of eye grounds diagnosis, Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments, 104450S.
Stoltz J.F., Streiff F., & Larcan A. et al. (1987). Interet de la mesure de la deformabilite et de l'agregation des hematies en biologie clinique. Ann. med. Nancy et Est. 26(6), 431—436.
Stoltz, J.F., Streiff, F., Larcan A. et al. Interet de la mesure de la deformabilite et de l'agregation des hematies en biologie clinique. Ann. med. Nancy et Est. 26(6), 431—436.
Timchenko, L.I., Pavlov, S.V., Wójcik, W., et al. (2017). Bio-inspired approach to multistage image processing, Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy, 104453M.
Wong, T.Y., Klein, R., Sharrett A.R., et al.(2014). Retinal arteriolar diameter and risk for hypertension. Ann. Intern. Med, l40(4), 248-255.
Downloads
-
PDF
Downloads: 23