NEW BASE POINT ALGORITHMS FOR EDWARDS ELLIPTIC CURVES
DOI:
https://doi.org/10.31649/1999-9941-2020-47-1-39-47Keywords:
complete Edwards curves, twisted Edwards curves, order of a curve, order of a point, base point, quadratic residue, quadratic nonresidue, digital signature algorithm, Weierstrass curves, exponential speed increaseAbstract
Transformations on elliptic curves which are used in the national digital signature standard DSTU 4145 2002, satisfy modern requirements. However, the fast development of computer technologies and a significant interest in cryptology worldwide have led to an increase in research, the constant emergence of new powerful cryptanalysis methods and, as a consequence, to the possible shortening of the lifetime of existing and new algorithms. This article addresses the current scientific and practical problem of investigating the properties of elliptic curves in the Edwards form over a finite field , p ≠ 2, suitable for use in asymmetric cryptosystem, in particular, digital signature algorithms. Based on the research completed, new ways of determination of a base point on Edwards curves were outlined and described. Three new algorithms were proposed for determination of the base point for constructing a cryptosystem on the full and twisted Edwards curves. In this work the comparative analysis of the performance of the developed algorithms of the Edwards curves base point determination and the performance of crypto-algorithms on the non-perpendicular elliptic curves in the Weierstrass form over the fields of characteristic 2 was carried out. The analysis shows that proposed algorithms are faster than the standard Weirstrass digital signature curve algorithm – respectively, the first algorithm – 180 times, the second–times, and the third algorithm– (times. It is proved that the use of elliptic curves in the form of Edwards over finite field , instead of Weierstrass curves, can increase the speed of operations of adding points in asymmetric cryptosystems. The results of the work can be applied to the analysis of existing problems and creation of new algorithms and standards of asymmetric cryptography.
References
Bernstein Daniel J., Lange Tanja. Faster addition and doubling on elliptic curves. IST Programme under Contract IST–2002–507932 ECRYPT, 2007, PP. 1-20.
Бессалов А.В., Цыганкова О.В. Производительность групповых операций на скрученной кривой Эдвардса над простым полем. // Радиотехника №181, 2015. С.58-63.
Бессалов А.В., Цыганкова О.В. Классификация кривих в форме Эдвардса над простым полем. // Прикладная радиоелектроника, Том 14 № 3, 2015. С.197-203.
Bessalov A.V.,Tsygankova O.V. New properties of the Edwards form elliptic curveover a primefield // Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika) №180 2015. рр.137-143.
Bessalov A. V., Tsygankova O.V. Interrelation of families of points of highorderon the Edwards curve over a primefield // English translation of Problems of Informati on Transmission, 2015, Vol. 51, № 4, pp. 391-397. sci-hub.tw/10.1134/S0032946015040080
Бессалов А.В., Цыганкова О.В. Метод определения точек максимального порядка на кривой Эд-вардса. // Спеціальні телекомунікаційні системи та захист інформації. Збірник наукових праць, випуск 2(26), 2014. С.18-21.
Bernstein Daniel J.,Birkner Peter, JoyeMarc, Lange Tanja, Peters Christiane. Twisted Edwards Curves.//IST Programme under Contract IST–2002–507932 ECRYPT, and in part by the National Science Foundation under grant ITR–0716498, 2008, РР. 1-17.
Бессалов А.В. Эллиптические кривые в форме Эдвардса и криптография: монографія //изд-во «Политехника», КПИ им. Игоря Сикорского, Киев. 2017. – 272с.
Downloads
-
PDF (Українська)
Downloads: 224