APPLICATION OF ROLLED NEURAL NETWORKS FOR DIAGNOSIS OF COVID-19 ON THE BASIS OF PULMONARY X-RAYS

Authors

  • Yevhen O. Shemet Vinnytsia National Technical University
  • Andrii A. Papa Vinnytsia National Technical University
  • Andrii A. Yarovyi Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1999-9941-2021-50-1-64-68

Keywords:

convolutional neural networks, classification, radiograph, COVID-19

Abstract

The object of the study is the process of classification of lung radiographs for the diagnosis of COVID-19. The research is based on the use of deep convolutional neural networks, which make it possible to store spatial information and analyze complex images, preventing the attenuation of the gradient. The principle of operation of convolutional neural networks and the advantages of their use in application to complex images, in comparison with artificial neural networks based on a multilayer perceptron are considered. The main assumption of the study is the hypothesis that the use of a deep convolutional neural network for the classification of radiographs of the lungs will obtain a high-accuracy result in the diagnosis of COVID-19 and will automate the diagnostic process. The urgency of the problem of automated diagnosis of COVID-19 on the basis of lung radiographs is considered. Training of high-performance architectures of deep convolutional neural networks, with the use of additional methods of image processing to prevent retraining. The results of neural networks are compared and statistical information is given to assess the quality of their work. The analysis of the results of the artificial neural network, using image division by the Lyme method. The expediency and prospects of using deep convolutional artificial neural networks for automation of COVID-19 diagnosis on the basis of pulmonary radiographs are substantiated. Common errors of artificial neural networks and possible approaches to their prevention are analyzed. The disadvantages of using the considered approaches and the difficulties that may arise in automation are considered, according to the results, possible options for improving the quality of the deep convolutional neural network are proposed.

Author Biographies

Yevhen O. Shemet, Vinnytsia National Technical University

Postgraduate Student of Computer Science Department

Andrii A. Papa, Vinnytsia National Technical University

Postgraduate Student of Computer Science Department

Andrii A. Yarovyi, Vinnytsia National Technical University

Doctor of Science (Eng.), Professor, Head of the Computer Science Department

References

PyTorch. [Online]. Available: https://pytorch.org. Accessed on: February 01, 2021.

Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger, «Densely Connected Convolutional Networks», Cornell University Library, 2015. [Online]. Available: https://arxiv.org/abs/1608.06993. Accessed on: February 01, 2021.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna, «Rethinking the Inception Architecture for Computer Vision», Cornell University Library, 2015. [Online]. Available: https://arxiv.org/abs/1512.00567/. Accessed on: February 01, 2021.

Karen Simonyan, Andrew Zisserman, «Very Deep Convolutional Networks for Large-Scale Visual Recognition», International Conference on Learning Representations, 2015. [Online]. Available: https://www.robots.ox.ac.uk/~vgg/research/very_deep. Accessed on: February 01, 2021.

Tao Ai, Zhenlu Yang, Hongyan Hou, Chenao Zhan, and Liming Xia. 2020. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology (2020), 200642.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, «Deep Residual Learning for Image Recognition», Cornell University Library, 2015. [Online]. Available: https://arxiv.org/abs/1512.03385. Accessed on: February 01, 2021.

Shengli Jiang, Victor M. Zavala, «Convolutional Neural Nets: Foundations, Computations, and New Applications», Cornell University Library, 2015 [Online]. Available: https://arxiv.org/abs/2101.04869. Accessed on: February 01, 2021.

Shaeke Salman, Xiuwen Liu, «Overfitting Mechanism and Avoidance in Deep Neural Networks», Cornell University Library, 2020. [Online]. Available: https://arxiv.org/abs/1901.06566. Accessed on: February 01, 2021.

Ilya Kostrikov, Denis Yarats, Rob Fergu, «Image Augmentation Is All You Need: Regularizing Deep Reinforcement Learning from Pixels», Cornell University Library, 2020. [Online]. Available: https://arxiv.org/abs/2004.13649. Accessed on: February 01, 2021.

Tawsifur Rahman, Dr. Muhammad Chowdhury, Amith Khandakar, «COVID-19 Radiography Data-base», Kaggle, 2021. [Online]. Available: https://www.kaggle.com/tawsifurrahman/covid19-radiography-database. Accessed on: February 01, 2021.

Downloads

Abstract views: 432

Published

2021-04-19

How to Cite

[1]
Y. O. . Shemet, A. A. . Papa, and A. A. . Yarovyi, “APPLICATION OF ROLLED NEURAL NETWORKS FOR DIAGNOSIS OF COVID-19 ON THE BASIS OF PULMONARY X-RAYS”, ІТКІ, vol. 50, no. 1, pp. 64–68, Apr. 2021.

Issue

Section

Information technology and coding theory

Metrics

Downloads

Download data is not yet available.