VECTORS CODE LINEAR INTERPOLATION METHOD FOR FORMING LINE SEGMENTS
DOI:
https://doi.org/10.31649/1999-9941-2023-57-2-87-92Keywords:
linear interpolation, step trajectory, vector generator, matrix screen, interpolation error, code interpolation, graphic images, graphic primitivesAbstract
Abstract. Graphic images are formed using graphic primitives. These are the smallest, indivisible from the point of view of application programs, graphic elements used as the basis for building more complex images. Among the graphic primitives, the segments of straight lines, for the formation of which provides linear interpolation, have the highest specific weight. The performance of forming a graphic scene depends on the time of vector generation, therefore the question of increasing the performance of linear interpolation is relevant, especially for dynamic images. With the use of matrix screens and matrix executive bodies in registration devices, the possibility of one-stroke reproduction of row or column elements appears, which allows you to significantly increase the speed of these devices. This mode of operation is promising. Its organization requires the development of interpolation methods that allow in one interpolation cycle to receive the increment code in a row or column (code interpolation). A coded linear interpolation method is proposed, the feature of which is determined in each interpolation clock of digital segments, which includes the number of increments of the same type with the same ordinate (abscissa). For this cycle, prepare for interpolation a larger increment of the line segment to a smaller one. In the future, this ratio and the remainder of the division are used to determine digital segments. In the proposed method, the remainder of the division of a larger increment by a smaller one is accumulated, which is equal to the smaller increment. This allows you to eliminate the accumulation of error and ensure that the end point of the straight line segment is reached. The maximum interpolation error in this case does not exceed half of the discretization step, which is due to the symmetry of the error. The code linear interpolation algorithm is proposed. The research carried out in the work can be used to build high-performance computer graphics tools.
References
Е. А. Башков, О. А. Авксентьева и Аль-Орайкат Анас М. «К построению генератора графических примитивов для трехмерных дисплеев», В сб. Наукові праці Донецького національного тех-нічного університету, серія "Проблеми моделювання та автоматизації проектування динаміч-них систем". Вип. 7 (150), с. 203-214, 2008.
Анас Махмуд Аль-Орайкат, Е. А. Башков, О. В. Дубровина и др «Алгоритмический базис пост-роения генераторов отрезков прямых для 3D дисплеїв», Наукові праці Донецького державного технічного університету, Серія «Обчислювальна техніка та автоматизація». - Вип. 18 (169), с.62-70.
Е. А. Башков, О. А. Авксентьева, Д. И. Хлопов, и Г. В. Войтов, «Реализация специализированного устройства генерации отрезков прямых для объемных 3d дисплеев на плис FPGA, Наукові праці Донецького національного технічного університету, серія: «Проблеми моделювання та автоматизації проектування» № 1 (10)-2(11), с. 221-226. 2012.
В. Г. Маценко, Комп'ютерна графіка: Навчальний посібник. Чернівці, Рута 2009.
Е. A. Bashkov, O. A. Avksentyeva and Al-Oraykat Anas M. «Do pobudovy heneratora hrafichnykh prymityviv dlya tryvymirnykh dyspleyiv»., U zb. Naukovi pratsi Donetskoho natsionalnoho tekh-nichnoho universytetu, seriya "Problemy modelyuvannya ta avtomatyzatsiyi proektuvannya dynamichnykh system". Vip. 7 (150), s. 203-214, 2008.
Anas Makhmud Al-Oraykat, E. A. Bashkov, O. V. Dubrovina ta in «Alhorytmichnyy bazys pobudovy heneratoriv vidrizkiv pryamykh dlya 3D dyspleyiv», Naukovi pratsi Donetskoho derzhavnoho tekh-nichnoho universytetu, Seriya «Obchyslyuvalna tekhnika ta avtomatyzatsiya». - Vip. 18 (169), s.62-70.
E. A. Bashkov, O. A. Avksentyeva, D. I. Khlopov, ta H. V. Voytov, «Realizatsiya spetsializovanoho prystroyu heneratsiyi vidrizkiv pryamykh dlya ob'yemnykh 3d dyspleyiv na plis FPGA, Naukovi pratsi Donetskoho natsionalnoho tekhnichnoho universytetu, seriya: «Problemy modelyuvannya ta avtomatyzatsiyi proektuvannya» № 1 (10)-2(11), s. 221-226. 2012.
V. H. Matsenko, Komp'yuterna hrafika: Navchalnyy posibnyk. Chernivtsi, Ruta 2009.
Downloads
-
PDF (Українська)
Downloads: 90