CONSTRUCTION OF A FORMALIZED MATHEMATICAL MODEL TO ENSURE THE CALCULATION OF RATING ASSESSMENT
DOI:
https://doi.org/10.31649/1999-9941-2021-50-1-99-104Keywords:
criteria, mathematical model, modeling of decision support system, rating, film ratingAbstract
The article defines that the theory and methods of solving problems are the content of mathematical programming. Based on this, it is proposed to consider the principle of modeling a decision support system to determine the rating, taking into account the factors influencing it. An important component of most DSS are mathematical models, analytical tools that are precisely model-oriented. The form of the relationship between the key variables involved in decision-making is considered. The authors formalize the relevant mathematical model, which is the basis of the decision support system of the optimal choice, taking into account the criteria influencing this choice. For example, the modeling of the decision support system of the film rating process according to the specified criteria is considered. The factors influencing the rating of the film selection are described. It is suggested to choose MS ACCESS (Microsoft Access) as one of the most popular systems for IBM PC and compatible computers as technologies for the application implementation. It was found that the obtained software product of the decision support system for the selection of films for viewing, provides an opportunity through the proposed model to ensure the selection of the film taking into account the individual requirements of the viewer (viewing movies with the highest rating).
References
I. Yu. Semenova, Matematychni modeli MSS: navchalnyi posibnyk. K., Ukraina: Kyivskyi nats. un-t im. T. H. Shevchenka, 2014, 82 s.
V. F. Sytnyk, Systemy pidtrymky pryiniattia rishen: navchalnyi posibnyk. K., Ukraina: KNEU, 2009, 614 s.
V. V. Khomiuk, I. V. Khomiuk, «Matematychne modeliuvannia v konteksti zdiisnennia mizh predmetnykh zviazkiv kursu vyshchoi matematyky u VNZ», Zbirnyk naukovykh prats «Aktualni pytannia pryrodnycho-matematychnoi osvity», Sumy: Sumskyi derzh. pedahohichnyi universytet im. A. S. Makarenka, vyp. 2(10), s. 43–50, 2017.
H. V Slavko, Matematyka prohramistam: navchalnyi pidruchnyk. Kremenchuk, Ukraina: PP Shcherbatykh O.V., 2018, 184 s.
Alexey D Azarov, Svitlana A Kyrylashchyk, Sergey V Bogomolov, Oleksiy Y Stakhov, Andrzej Kotyra, Orken Mamyrbaev, «Selection of the calculus system base for ADC and DAC with weight redundancy», Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019. International Society for Optics and Photonics, p. 1117662, 2019.
S. M. Bratushka, S. M. Novak, S. O. Khailuk, Systemy pidtrymky pryiniattia rishen: navchalnyi posibnyk dlia samostiinoho vyvchennia dystsypliny. Sumy, Ukraina: DVNZ «UABS NBU», 2010, 265 s.
M. A. Demydenko, Systemy pidtrymky pryiniattia rishen: navch. posib. D., Ukraina: Nats. hirn. un-t, 2016, 104 s.
V. K. Halitsyn, F. A. Levchenko, Bahatokopystuvatski obchysliuvalni systemy ta mepezhi: navch. posibnyk. K., Ukraina: KNEU, 2017.
Downloads
-
PDF (Українська)
Downloads: 273